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Real-Time Magnetic Resonance Imaging
Krishna S. Nayak, PhD,1* Yongwan Lim, PhD,1 Adrienne E. Campbell-Washburn, PhD,2 and

Jennifer Steeden, PhD3

Real-time magnetic resonance imaging (RT-MRI) allows for imaging dynamic processes as they occur, without relying on
any repetition or synchronization. This is made possible by modern MRI technology such as fast-switching gradients and
parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady-
state free precession, and single-shot rapid acquisition with relaxation enhancement. RT-MRI has earned an important role
in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas
of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway
vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple
forms of soft-tissue contrast, as well as flow information. In this review, we discuss the history of RT-MRI, fundamental
tradeoffs, enabling technology, established applications, and current trends.
Level of Evidence: 5
Technical Efficacy Stage: 1
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REAL-TIME MAGNETIC RESONANCE IMAGING
(RT-MRI) enables rapid and continuous acquisition of

images that allows visualization of dynamic processes as they
occur. RT-MRI does not rely on any gating, synchronization,
or repetition of the underlying movement or contrast dynam-
ics. The quality of RT-MRI has experienced major leaps in
the past 30+ years due to advances in MRI technology,
including fast switching gradients, array receiver coils, and
advanced reconstruction including parallel imaging, com-
pressed sensing, and artificial intelligence. Over this same
time window, RT-MRI has earned a substantial role in both
diagnostic imaging and in the image guidance of invasive pro-
cedures. Diagnostic RT-MRI has proven most valuable in
areas of the body that undergo substantial and irregular
motion, such as the heart (eg, arrhythmia), upper airway
vocal tract (eg, speech production), joints (eg, instability),
and gastrointestinal system (eg, motility). RT-MRI for inter-
ventional guidance has proven most valuable for procedures
that require multiple forms of soft-tissue contrast, as well as
flow information (eg, right heart catheterization).

Historically, MRI has had a reputation of being a
“slow” modality, especially compared to x-ray, computed
tomography (CT), and ultrasound. This perception is chang-
ing. On modern commercial MRI equipment, RT-MRI is
now feasible, practical, and readily available. It is compatible
with most MRI sequences, and notably includes proton den-
sity (PD) and T1-weighted (T1w) spoiled gradient echo
(GRE), balanced steady-state free precession (bSSFP), and
single-shot rapid acquisition with relaxation enhancement
(RARE). RT-MRI can provide more than adequate spatio-
temporal resolution, contrast-to-noise efficiency, and image
quality for a wide array of applications.

The purpose of this review is to summarize current
state-of-the-art RT-MRI technology and clinical applications,
predominantly focusing on imaging of dynamic motion. We
begin with a discussion of the history of RT-MRI and funda-
mental tradeoffs. We then review enabling technology, which
includes hardware, acquisition, reconstruction, interaction,
and postprocessing. Next, we review the most common appli-
cations, including cardiac, interventional, upper airway, and

View this article online at wileyonlinelibrary.com. DOI: 10.1002/jmri.27411

Received Aug 1, 2020, Accepted for publication Oct 9, 2020.

*Address reprint requests to: K.S.N., 3740 McClintock Ave, EEB 400C, Los Angeles, CA 90089-2564, USA. E-mail: knayak@usc.edu

From the 1Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA; 2Cardiovascular
Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; and 3Institute of

Cardiovascular Science, Centre for Cardiovascular Imaging, University College London, London, UK

Additional supporting information may be found in the online version of this article

© 2020 International Society for Magnetic Resonance in Medicine 81

 15222586, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.27411 by U
niversity O

f Southern C
alifornia, W

iley O
nline L

ibrary on [10/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:knayak@usc.edu
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjmri.27411&domain=pdf&date_stamp=2020-12-09


musculoskeletal. Finally, we discuss current trends, including
the use of machine learning and the use of high-performance
low-field MRI systems.

There has been some recent debate regarding the
nomenclature for RT-MRI.1,2 In this article, RT-MRI will
refer to real-time acquisition that does not use any gating,
synchronization, or repetition of the movement. We use the
term interactive RT-MRI when latency between acquisition
and image display is short enough to permit interaction (eg,
guidance of interventions, or calculation of real-time cardiac
output).

Brief History
Real-time techniques are commonly used in medical imaging,
including live video for gait analysis, fluoroscopy for diagnos-
tic studies of the gastrointestinal tract, and ultrasound to
guide interventional procedures such as biopsies. Develop-
ment toward fast MRI began shortly after the first medical
applications. This included the development of echo planar
imaging (EPI) by Sir Peter Mansfield in 1977,3 as well as
introduction of fast low angle shot magnetic resonance imag-
ing (FLASH) by Frahm et al in 1986,4 and fast spin-echo
imaging (RARE) by Hennig et al in 1986.5 Early clinical
applications of real-time imaging include MR fluoroscopic
images of the head by Farzaneh et al in 1989,6 followed by
techniques to interactively control scan slice orientation and
image contrast by Holzinger et al in 1990,7 and real-time
flow measurements by Riederer et al in 1991.8

More recent developments have enabled substantial pro-
gress in MRI acquisition speed, which are discussed below. There
has been tremendous growth in the number of publications on
RT-MRI, as shown in Fig. 1. Many of the large vendors have
adopted the use of interactive RT-MRI for localization and scan

plane/volume prescription. And several diagnostic and interven-
tional applications have developed and matured.

Fundamental Tradeoffs
MRI in general must balance a tradeoff between spatial reso-
lution, temporal resolution, signal-to-noise ratio (SNR), arti-
facts, reconstruction latency, and modeling assumptions. This
tradeoff is put to the test in RT-MRI, where temporal resolu-
tion is at a premium. Figure 2 shows a scatterplot of spatial
resolution (x-axis) vs. temporal resolution (y-axis) from
22 recent publications that utilize state-of-the-art 2D RT-
MRI techniques. These publications, with acquisition details
listed in Table S1, were selected to include a diversity of
imaging methods and target applications, and to include work
from different laboratories both with and without specialized
hardware and software capability. The general tradeoff is illus-
trated by a gray shaded bar, with fine spatial resolution and
coarse temporal resolution on the upper left (eg, 1×1 mm2

with 80 msec temporal resolution, 12.5 fps), and coarse spa-
tial resolution and fine temporal resolution on the right (eg,
3.5×3.5 mm2 with 20 msec temporal resolution, 50 fps).
Deviations from this line occur because the data span several
different applications, reconstruction methods, coil geome-
tries, field strengths, and modeling assumptions. The impact
of these is discussed in detail in the Enabling Technology
section below. In general, moving towards the lower left
requires using more advanced technology, advanced model-
ing, and increased computational demand, or accepting worse
SNR and/or more severe image artifacts.

Enabling Technology
RT-MRI is made possible by several system components that
are included in most modern high-end clinical MRI systems.

FIGURE 1: Publications involving RT-MRI. PubMed search: ((“real-time MRI”) OR (“real-time NMR”) OR (“real-time magnetic
resonance”) OR (“real-time interactive MRI”) OR (“RT-MRI”)).
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These beneficial components are discussed in this section.
Items that are nonstandard are clearly identified.

Hardware
The speed of MRI is fundamentally limited by nuclear mag-
netic resonance (NMR) relaxation, and the time required to
cover k-space. RT-MRI therefore relies on time-efficient spa-
tial encoding. One major technological advance has been
high-fidelity fast-switching shielded gradients, with eddy-
current precompensation. Modern systems offer this with gra-
dients that can produce ≥40 mT/m amplitude and ≥150mT/
m/msec slew rate on each physical axis with a 50–100% duty
cycle. This enables GRE and bSSFP contrast with very short
repetition times and enables efficient k-space sampling (eg,
spiral or echo-planar). Spiral and EPI trajectories were among
the first technical advances to substantially broaden the set of
applications that could be addressed with RT-MRI.9

RT-MRI also benefits from the use of parallel imaging,
which requires carefully designed receiver coil arrays that pro-
vide diverse coil sensitivity along the likely directions of spa-
tial encoding and k-space undersampling. These coils should
preferably preserve body-noise dominance.10 Several MRI
manufacturers and third-party vendors manufacture such coils
and optimized cardiac and torso coils are readily available.
However, coils for nascent applications such as speech11,12

and dynamic musculoskeletal imaging are not yet standard-
ized, and there is substantial room for development.

Interactive RT-MRI requires the use of a flexible pro-
grammable console that can allow “on-the-fly” changes to the
scan plane, shim, and many other imaging parameters. Several
modern systems offer this capability, wherein many aspects of
a pulse sequence can be modified without substantial inter-
ruption (ie, within a few milliseconds).

Data Acquisition
High frame-rate RT-MRI has been fundamentally enabled by
two gradient echo sequences: GRE and bSSFP (Fig. 3a). RF-
spoiled and gradient-spoiled GRE sequences are robust to
artifacts and provide T1-weighted contrast with a short repeti-
tion time (TR). bSSFP sequences14 provide higher SNR effi-
ciency than GRE, and provide T2/T1 contrast, which is
extremely advantageous in cardiac imaging because of the
excellent blood–myocardium contrast (Fig. 3a, right). How-
ever, bSSFP has two important limitations. One is sensitivity
to off-resonance, which manifests as banding artifacts.15

bSSFP RT-MRI is often used at ≤ 1.5T or at 3T with careful
shimming over the region of interest (ROI) and with the
shortest possible TR. The second issue is a transient approach
to steady state, which can be problematic if the application
requires frequent switching of the scan plane or volumes, or if
there is flow or motion through regions that experience the
banding artifact. Transient signal oscillations can be easily
mitigated using catalyzation preparation schemes; however, it
still takes time to reach steady-state contrast.

RT-MRI has been made possible by efficient k-space
sampling trajectories (eg, spiral and EPI, described in the pre-
ceding section) and clever temporal undersampling schemes.
Although it is inefficient, 2DFT imaging may be used in both
2D and 3D imaging due to the simplicity of reconstruction

and robustness to artifacts. A wide range of k
*

-t
undersampling schemes exists for accelerated 2DFT
imaging.16–21 For example, one can use variable-density

pseudo-random k
*

-t sampling, which creates incoherent
aliasing artifacts in a certain transform domain that can be
resolved by advanced reconstruction algorithms.

Figure 3b illustrates more efficient sampling trajectories.
EPI3 is an alternative where multiple Cartesian lines are
acquired after each excitation, therefore k-space can be filled
only with one or fewer repetitions. However, its long readout
time makes it vulnerable to ghosting and distortions from gra-
dient waveform inaccuracy or off-resonance and near-RT cor-
rection methods22,23 have been proposed.

Most preferred are radial and spiral samplings when
higher spatial and/or temporal resolution is desired. Both spi-
ral and radial sampling naturally oversample the center of k-
space and this offers motion robustness and tolerance to
undersampling. While radial sampling is π/2 less efficient
than Cartesian, its motion robustness and tolerance to
undersampling make it a popular RT-MRI acquisition
method.24 With moderate angular undersampling along with
the golden angle scheme,25 the streaking artifacts are usually
mild in appearance and incoherent over time. Alternatively,
spirals can be very efficient methods to cover k-space.
Single-shot spirals can completely cover k-space, but the
resultant long readout time increases sensitivity to off-reso-
nance, resulting in spatial blurring. Multishot spiral

FIGURE 2: Scatterplot of 2D RT-MRI spatial and temporal
resolution. Spatial resolution (x-axis) vs. temporal resolution (y-axis)
is plotted from 22 recent publications that utilize state-of-the-art
methodology, as selected by the authors of this review,
summarized in Table S1. The gray shaded bar indicates the general
spatiotemporal resolution tradeoff. All substantial deviations are
due to variations in the FOV, use of parallel imaging, use of
reconstruction constraints, and minimum acceptable SNR.
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acquisitions with a short readout time can be used to alleviate
blurring. Both radial and spiral imaging can be accelerated

with the use of k
*

-t sampling strategies such as undersampling
and random angle order schemes, for example bit-reversed9 or
golden angle13,25 (Fig. 3c). For instance, radial or spiral imag-
ing can be performed with an angle incremented by the
golden angle (222.5�)25 or tiny golden angles.26 This, when
undersampled, produces relatively incoherent aliasing in the
spatial and temporal domain (or in a transform domain),
which is well suited for advanced reconstruction algorithms.
The view order is an added variable and the golden angle
scheme is widely used, as it additionally has the retrospective
field-of-view (FOV) tradeoff ability as opposed to the conven-
tional scheme (right, Fig. 3c).

RT-MRI has also benefited from 2D multislice
imaging,11,27–31 which can be performed by utilizing time-
interleaved sampling of acquisition schemes described above
with a corresponding reduction in spatial or temporal resolu-
tion by the number of slices. Alternatively, simultaneous
multislice imaging32 can be utilized to accelerate data acquisi-
tion. Especially, controlled aliasing in parallel imaging results
in higher acceleration, also known as CAIPIRINHA,33,34 has
shown substantially reduced aliasing artifacts. This technique
has recently been explored in some RT-MRI studies.35–37 3D
imaging has also been explored by extending 2D acquisition
schemes to 3D or by using novel 3D sampling trajectories.
Radial or spiral can readily be extended to 3D stack-of-stars38

or 3D stack-of-spirals39,40 by adding phase encoding steps

FIGURE 3: Common sequences, sampling trajectories, and view orders used in 2D RT-MRI. (a) Sequence diagrams of spoiled GRE
and bSSFP, and the steady-state signal amplitude as a function of off-resonance Δf; Simulation parameters: TR = 5 msec; flip
angle = 5� for spoiled GRE; flip angle = 60� for bSSFP; myocardium T1/T2 = 950/50 msec; blood T1/T2 = 1500/250 msec
(representative of 1.5T). (b) Non-Cartesian sampling trajectories of undersampled radial, single-shot spiral, and single-shot EPI. (c)
View orders of multishot spiral of conventional 13-interleaf bit-reversed and golden-ratio, and unaliased FOV as a function of the
number of interleaves [Reproduced from Ref. (13)].
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along kz direction. Echo-volume imaging,41 a 3D extension
of EPI, can achieve time-efficient 3D imaging and has pri-
marily been investigated for brain functional MRI.42 Combi-
nations of two sampling schemes for 3D imaging has also
been explored, including EPI43 and Cartesian sampling,44

each combined with golden–angle radial sampling. There has
also been interesting literature where volumetric image can be
efficiently obtained by RT-MRI acquisitions with automatic
advancement of the slice position.45 While 3D acquisitions

allow for a more flexible k
*

-t sampling strategy and therefore
much redundant information to be exploited along the addi-
tional dimension, the increased amount of data is challenging
in terms of data processing and reconstruction.

Reconstruction
RT-MRI data sampling and reconstruction varies with applica-
tion. This is because there is a trade-off between temporal reso-
lution and reconstruction time (governed by the complexity of
the algorithm). The simplest reconstruction techniques use
data sharing strategies, for example, keyhole or sliding window
reconstruction.46 This simplicity enables low latency recon-
struction; however, the true temporal resolution is coarse.

Higher levels of acceleration are achievable by under-
sampling; however, zero-filled reconstruction results in spatial
aliasing that renders the images clinically unusable. One can
use parallel imaging to recover usable images, which can be
performed in the image domain; sensitivity encoding
(SENSE),47 or in k-space; generalized autocalibrating partial
parallel acquisition (GRAPPA).48 Parallel imaging of Carte-
sian data enables very low latency reconstructions; hence, its
popularity in RT-MRI interventional applications.

Reconstruction of undersampled non-Cartesian data is
substantially more complex. This is because the k-space
points must be resampled onto a Cartesian grid in order to
use the fast Fourier transform (FFT), which increases compu-
tation demand.49 Additionally, in non-Cartesian SENSE each
voxel in the image domain can potentially alias with all of the
other voxels, resulting in the need for time-consuming itera-
tive reconstructions.50 In non-Cartesian GRAPPA the irregu-
lar gaps in k-space result in the need for geometry-specific
GRAPPA weights,51,52 requiring large amounts of calibration
data. These drawbacks often restrict the use of non-Cartesian
parallel imaging to applications where real-time visualization
is not necessary. One exception is through-time GRAPPA,
where multiple fully sampled non-Cartesian datasets are
acquired and are used to learn the location-specific GRAPPA
weights.53–55

The level of acceleration achievable using parallel imag-
ing is, in theory, equal to the number of independent coil ele-
ments along the direction of undersampling. In practice,
acceleration rates are often limited to 2–3 using Cartesian tra-
jectories, and 3–4 using non-Cartesian trajectories. Higher

levels of acceleration can be achieved by combining temporal
and spatial encoding schemes. These techniques often lever-

age the fact that the MR data are sparse in x
*
-f space, includ-

ing; k
*

-t broad-use linear acquisition speed-up technique

(BLAST), k
*

-t SENSE, k
*

-t GRAPPA.56 In these schemes, the
reconstruction is constrained using some prior information
that can be used to determine the ground truth. These tech-
niques often preclude real-time reconstruction, as this prior
information is extracted from the data itself,57 or as part of a
prescan.

Even higher acceleration factors are possible using con-
strained reconstructions,58 compressed sensing,59 and regular-
ized nonlinear inversion (NLINV).60 These methods rely on
object models, such as sparsity in a known transform domain,
along with data sampling that produces incoherent aliasing in
the sparsity domain. Some of the most popular sparsifying
transforms for RT-MRI are finite differences, total variation,
wavelet, and Fourier transform, which can be applied to
exploit spatial and/or temporal sparsity. This category of
methods enables acquisition of exceptionally high temporal
and/or spatial resolution; however, they rely on nonlinear
reconstruction that is computationally expensive, resulting in
high reconstruction latency that often limits clinical adoption.

There has been substantial work towards reducing
image reconstruction times. This includes the use of coil
selection61 and coil compression62 techniques. Modern
graphics processing units (GPUs) enable improvements in
latency and throughput, through their massively parallel
architecture,63–65 and have enabled up to 27-fold reduction
in latency compared to conventional CPUs,66 making interac-
tive RT-MRI feasible.

In addition, the efficient k-space trajectories often used in
RT-MRI are susceptible to artifacts from linear time-invariant
gradient distortions, including eddy currents. Correction of
these has been shown to be feasible in real time.23 However,
artifacts from concomitant fields67,68 are more challenging. At
present, these require the use of approximations,69 or the use
of NMR field probes,70,71 in conjunction with a more sophisti-
cated offline reconstruction.72

Vendor-agnostic raw data formats have been developed
to promote reconstruction algorithm sharing and data shar-
ing, for example ISMRM Raw Data (ISMRMRD)73 and Raw
Array (RA).74 The ISMRMRD format is designed to support
simultaneous streaming of raw data, pulse sequence wave-
forms, and physiology waveforms, to image reconstruction or
processing software.75 This streaming capability is important
for fast reconstruction of real-time images.

Postprocessing
Offline processing, including segmentation, parameter quanti-
fication, and distortion correction, of RT-MRI images is quite
similar to traditional offline processing of CINE imaging or
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even static imaging. However, there are many scenarios where
inline postprocessing adds value, particularly for interactive
RT-MRI. The unique features of these methods in RT-MRI
are that they typically have to tolerate lower image SNR and
have to satisfy maximum latency requirements. Inline seg-
mentation has been shown to aid monitoring of ventricular
function during cardiac interventions.76 Inline flow quantifi-
cation has been shown to expedite comprehensive cardiac
examinations.77 And inline off-resonance artifact correction
(deblurring) has been shown to substantially improve the
sharpness of speech articulator depiction.78

Interaction/Visualization
RT-MRI applications often benefit from the synchronization
with other complementary real-time inputs. For cardiopulmo-
nary testing, physiological monitoring of ECG, respiration,
and expiratory gases may be synchronized with real-time car-
diovascular imaging.76 MRI-guided catheterization requires
electrophysiological recording of high-fidelity ECG wave-
forms, which can be challenging within the MRI environ-
ment, and hemodynamic recording of invasive pressure
waveforms.79,80 Real-time speech imaging requires synchroni-
zation of audio signals with imaging data, which can be
achieved with commercial products (eg, FORMI II+,
Optoacoustics, Israel).24,81

Additionally, for some applications user interaction is
required to modify parameters during imaging using real-time
feedback to the scanner. Most notably, for real-time MRI-
guided intervention the modification of slice position, slice
thickness, slice orientation, image contrast, frame rate, and
device imaging modules can each be toggled and modified
interactively without a pause in the continuous stream of
real-time imaging. Interactivity requires that images are dis-
played and manipulated in real-time, and that pulse sequence
parameters are accessible to be modified on-the-fly.

Major MRI vendors have prototype or product graphi-
cal user interfaces for interactive imaging (eg, Monte Carlo
prototype, Siemens Healthcare, Erlangen Germany; iSuite,
Philips, Best, The Netherlands; iDrive and MR Echo, GE
Healthcare, Waukesha, WI). Interactive imaging platforms
are also available through independent MRI software vendors,
most notably the RTHawk platform (Heart Vista, Los Altos,
CA).82 This platform is MRI vendor agnostic as long as a
fully flexible stub sequence is available, but to date has been
primarily developed on the GE platform. This system is com-
patible with interactive scan plane modification using a six
degree-of-freedom 3D mouse.82

Auxiliary equipment can also be used inside of the MRI
suite for interactive modification of imaging. MRI-guided
catheterization procedures use foot-pedals to leave interven-
tionist hands available for device manipulation, which mimics
traditional x-ray catheterization suites. Other auxiliary equip-
ment including computer mice, keyboards, and tablets have

been explored for interactive imaging,83 as well as gesture-
based scan control.84 Furthermore, augmented reality and vir-
tual reality equipment85 may be attractive for interactive visu-
alization of real-time imaging in the future.

Applications
RT-MRI benefits a broad range of diagnostic and interven-
tional applications. Here we summarize the application-
specific needs, imaging considerations, and the impact
to date.

Cardiac
RT-MRI enables imaging of the cardiovascular system with-
out the need for cardiac gating or respiratory compensation.
This is particularly valuable in patients with cardiac arrhyth-
mia86,87 where cardiac gating fails (�10% of patients referred
for diagnostic cardiac imaging), and in patients who find
breath-holding difficult (�10% of patients). It is also
extremely valuable in children with congenital heart disease
(CHD), where it can be used to lessen the need for seda-
tion88 and its associated risks.

Real-time assessment of cardiovascular structures
requires relatively high spatial and temporal resolution to
ensure accurate visualization and quantification. For example,
Setser et al89 recommend a minimum temporal resolution of
50 msec (20 fps), and spatial resolution of 2 mm for func-
tional RT-MRI of the left ventricle. Real-time ventricular
function imaging has been shown to achieve an excellent
agreement with reference standard breath-held, cardiac gated
techniques, through a combination of undersampled radial

trajectories with k
*

-t SENSE reconstructions in CHD,90 k
*

-t
SPARSE-SENSE in patients with tachycardia21 and myocar-
dial infarction,91 regularized nonlinear inversion,92 and more
recently, proof-of-concept studies using machine-learning
reconstructions in CHD.93 Figure 4a and Movie S1 contain a
representative example of image quality. Spiral trajectories,
although less popular, have been combined with compressed
sensing to achieve high-resolution imaging in children with
CHD.96

Quantification of blood flow using phase contrast
(PC) requires high spatial resolution to mitigate partial vol-
ume effects; Greil et al recommend that it is necessary to have
16 pixels in the cross-section of the vessel of interest to get
accurate flow quantification.97 PC RT-MRI has been used
clinically to assess the respiratory and cardiac components of
flow in patients with Fontan circulation,98,99 to quantify flow
in children with cardiac left-to-right shunts,100 to investigate
the effect of elevated intrathoracic pressure on blood flow,101

and in CHD.94 Figure 4b and Movie S2 contain a represen-
tative example of image quality.

RT-MRI also enables imaging during exercise, which
can be used to unmask subtle changes in early cardiovascular
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disease.102 Studies have shown the ability to measure ventric-
ular volumes during exercise; to assess the effect of percutane-
ous pulmonary valve implantation,103 to assess the
mechanisms which augment cardiac output with exercise in
repaired tetralogy of Fallot,104 and to unmask right ventricu-
lar dysfunction in pulmonary arterial hypertension.105 Real-
time flow during exercise has also been used in patients with
total cavopulmonary connection106 and after surgical bypass
of aortic arch obstruction.107 Continuous acquisition of real-
time flow during ramped exercise over 10 minutes has been
shown,63 as well as a combination with respiratory gas analy-
sis to simultaneously measure peak oxygen consumption
(VO2), enabling assessment of exercise capacity.108

Fetal cardiac RT-MRI is of interest as a potential sec-
ondary tool (after fetal echocardiography) to characterize
congenital cardiac malformations.109 It is one of the most
challenging applications of RT-MRI because of the very
high heart rates, need for high spatial resolution (tiny
hearts), need for interaction (to follow movement of the
fetus), and the desire to be conservative with specific absorp-
tion rate (SAR) and acoustic noise.110 It has been attempted
with some success95; however, RT-MRI acquisition with ret-
rospective metric-optimized-gating has provided a promising
approach for CINE MRI. Figure 4c and Movie S3 contain a
representative example of image quality of RT-MRI in the
fetal heart.

FIGURE 4: Illustration of cardiovascular RT-MRI. (a) Real-time cine imaging using tiny-golden angle radial bSSFP sequence at 1.5T,
with 12x undersampling and compressive sensing reconstruction (TE/TR = 1.3/2.7 msec, flip angle = 70�, in-plane
resolution = 2.1 mm, 32 msec temporal resolution, 31 fps). A movie can be found in Movie S1 [Adapted from Ref. (91)]. (b) Real-time
PCMR using perturbed spirals at 1.5T, with 18x undersampling and compressive sensing reconstruction. Top: Magnitude images,
Bottom: Phase images (TE/TR = 1.9/6.7 msec, VENC = 200 cm/s, flip angle = 20�, in-plane resolution = 1.8 mm, 27 msec temporal
resolution, 37 fps). A movie can be found in Movie S2 [Adapted from Ref. (94)]. (c) Real-time imaging of the fetal heart (shown by
arrow in first column) demonstrating gross fetal movement. Golden-angle radial bSSFP sequence at 1.5T, with 27x undersampling
and compressive sensing reconstruction (TR = 5.0 msec, flip angle = 70�, in-plane resolution = 1.0 mm, 74 msec temporal resolution,
14 fps). A movie can be found in Movie S3 [Adapted from Ref. (95)].
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MRI-Guided Invasive Procedures
MRI-guidance of diagnostic and therapeutic invasive proce-
dures employ intraprocedural imaging to navigate devices and
to assess procedural outcomes. Compared to traditional
image-guidance modalities such as x-ray and ultrasound, MRI
offers flexible image contrast and 3D imaging capabilities that
can improve tissue visualization during a procedure. Real-time
MRI is particularly valuable during complex device maneu-
vers and previous review articles have described the applica-
tions of real-time imaging technologies to guide invasive
procedures.111–113 Figure 5 and Movies S4 and S5 contain
illustrative examples.

Many invasive procedures have been performed in
patients in the MRI environment, including MRI-guided
biopsy117,118; radiotherapy119; thermal ablations such as
radiofrequency ablation,120,121 laser ablation, cryoablation,122

microwave ablation, and high-intensity focused ultrasound123;
chemoablation; drug injection; electrophysiology114,124,125;
and invasive pressure measurements.80,115,126

MRI-guided invasive procedures have unique require-
ments. Low-latency reconstruction and in-room image display
are essential, such that images can be used for real-time device
navigation and procedural decision-making. Interactivity of
imaging parameters is critical to control image contrast and
frame rate throughout the procedure. Image processing,
including image segmentation, registration, and distortion
correction, must also be performed on-the-fly.112 During
many invasive procedures, devices (eg, needles, catheters,
guidewires, sheaths) are imaged concurrently with target anat-
omy. Device imaging is performed using either “passive”
visualization, exploiting the material properties, or “active”
visualization, in which devices themselves are RF receivers,
designed as loopless antennas for imaging127 or microcoils for
3D device tracking128 (Fig. 5a, Movie S4). Solenoid and
loopless receiver coils positioned on invasive devices can also
be applied for small-FOV local imaging in MRI-endoscopy
applications.129

Most in-bore biopsy procedures of prostate, liver, breast,
and brain lesions use standard T2-weighted, T1-weighted,
diffusion-weighted, or dynamic contrast-enhanced imaging for
iterative confirmation of needle placement,117,118,130 with a
few studies employing high frame-rate dynamic needle guid-
ance.131,132 MRI-guided cardiovascular procedures are the
most technically demanding, requiring rapid multiplanar
imaging for device navigation. Most commonly, a 2D Carte-
sian bSSFP acquisition is used, in combination with parallel
imaging, to achieve 5–10 frames/sec, with magnetization
preparation pulses for contrast variation (Fig. 5b, Movie S5).
2D radial and spiral spoiled gradient echo acquisitions have
also been applied for cardiovascular procedures,133,134 and
when combined with regularized nonlinear inversion recon-
struction, have achieved a temporal resolution of 42 msec
(24 fps) with reconstruction delay of 27 msec.135

RT-MRI thermometry, using proton resonance fre-
quency shift imaging, is important to monitor thermal abla-
tions with high temporal resolution. Multislice single-shot
EPI acquisitions with real-time image registration methods
have been developed for thermometry and dosimetry during
cardiac RF ablations116,136 (Fig. 5c, Movie S6). The geometry
of transcranial high-intensity focused ultrasound (HIFU)
therapy devices restrict the number of receive coils that can
be positioned around the head, and undersampled stack-of-
spiral and stack-of-stars EPI thermometry acquisitions40,43

have been developed for volumetric brain coverage with
75-msec temporal resolution (13 fps). 3D dynamic keyhole
imaging has generated high spatiotemporal resolution
(1.5×1.5×6 mm3 with 455 msec temporal resolution, 2 fps)
imaging for dynamic guidance of radiotherapy.137 This work
utilizes a super-resolution generative model for high spatial
reconstruction from low-spatial and high-temporal resolution
images.

The unique set of requirements of MRI-guided invasive
procedures continues to motivate the innovation of RT-MRI
acquisitions, as well as rapid inline image reconstruction and
image processing.

Upper Airway
RT-MRI enables imaging soft-tissue structures and muscles
of the upper airway that are coordinated in space and time to
perform essential human functions such as speech, respira-
tion, and digestion. RT-MRI is preferred over other imaging
and movement-tracking modalities because it allows for
observing deep soft tissues such as the velum, pharyngeal
wall, and the larynx in the arbitrary imaging plane without
radiation or endoscopy. The nature of the movements of the
upper airway is not necessarily periodic and is unrepeatable.
RT-MRI can now be combined with intermittent tagging
pulses to visualize internal deformation in the tongue mus-
cles138,139 and be exploited to reconstruct 3D tongue shape
or model.140,141 Real-time visualization and interaction are
also advantageous for the operator to modify imaging parame-
ters on-the-fly and to ensure subject compliance with stimuli.

Figure 6 and Movies S7–S9 illustrate representative
research areas in speech production,24,144 sleep apnea,36,37,145

and swallowing.60 Imaging is often performed along with syn-
chronized recordings of physiological signals such as audio
signals in speech,146 polysomnography signals used in sleep
studies,36 and intraoral pressure sensor used in swallowing143

to aid real-time or retrospective analysis. Several clinical appli-
cations have also been explored such as velopharyngeal
insufficiency,147 apraxia,60,148 and postsurgical assessment of
glossectomy148,149 and cleft-palate repair.150,151 Many other
applications and technical aspects of the upper airway imag-
ing have been described in review articles with focuses on
speech,24,144,152 speech and sleep,153 sleep,145 and image
analysis techniques on RT-MRI of vocal tract motion.154
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The upper airway imaging generally requires high spatial
and temporal resolution, although specific imaging parameters
would be dictated by the applications shown in Fig. 1 in Lin-
gala et al.24 For speech, high temporal resolution, below
70 msec (greater than 14 fps) and spatial resolution of no more
than 3.5 mm2 are typically required to study a broad range of
speech events. For sleep, pharyngeal airway motion is relatively
slower than vocal tract motion, as it involves closure of the air-
way, requiring lower temporal resolution than imaging for
speech and swallowing. For swallowing, it is valuable to track
both the pharyngolaryngeal area and the lower esophageal
sphincter and its surrounding area.155

Current state-of-the-art techniques use non-Cartesian
sampling (radial or spiral acquisition) and parallel imaging,

combined with constrained reconstruction. This has enabled
2D dynamic images with spatial resolutions of 1.3–2.4 mm2

at high temporal resolutions of 10–60 msec (100 to 17 fps)
from highly undersampled MRI data.11,54,55,143,156–159

Imaging the 2D mid-sagittal plane is the most widely used,
as it is most informative thanks to its entire vocal tract cov-
erage from the lips to the glottis given a high temporal reso-
lution. Imaging a few 2D planes,11,29,30 simultaneous 2D
planes,36,37 or 3D38 at the cost of temporal resolution have
also been developed. Recently, 3D stack-of-spiral acquisition
demonstrated imaging of the full vocal tract (FOV:
200×200×70 mm3) with high spatiotemporal resolution
(2.4×2.4×5.8 mm3, with 72 msec temporal resolution,
14 fps) during natural speech.39

FIGURE 5: Illustrations of RT-MRI for MRI-guided invasive procedures. Cardiovascular procedures are the most technically
demanding for RT-MRI, and therefore are provided. (a) The position and orientation of catheter devices with two embedded
microcoils are tracked on a previously acquired 3D volume for an electrophysiology procedure. Real-time device tracing is achieved
using 3D gradient echo projection imaging (resolution 0.83 mm, 10 Hz tracking rate) [Reproduced from Ref. (114)]. (b) Interactive
RT-MRI used to navigate gadolinium-filled balloon wedge end-hole catheter during diagnostic right heart catheterization (bSSFP,
TE/TR = 1.44/2.88 msec, flip angle = 40�, in-plane resolution = 1.8×2.4 mm2, GRAPPA rate 2, 200 msec temporal resolution, 5 fps)
[Adapted from Ref. (115)]. (c) Real-time MRI thermometry used to calculate thermal dose during therapeutic ablation procedure
(gradient echo EPI, TE/TR = 18–20/110 msec, flip angle = 60�, in-plane resolution = 1.6×1.6 mm2, GRAPPA rate 2, 200 msec
temporal resolution, 5 slices/s) [Adapted from Ref. (116)].
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Imaging the upper airway has a unique cha-
llenge―tissue surfaces along the upper airway are the main
region of interest but are vulnerable to off-resonance
effects. Those include the movements of the articulators
during speech or swallowing, the closure of the vel-
opharyngeal port in velopharyngeal insufficiency, and the
collapse of the pharyngeal airway in sleep studies. Off-
resonance at the tissue surfaces manifest as blurring or sig-
nal loss with non-Cartesian sampling such as spirals and/or
appear as banding artifact when bSSFP sequences are used.
Careful shimming is usually carried out with a focus on the
tissue boundaries. Current RT-MRI studies for speech pro-
duction are most often conducted using short-duration spi-
rals (2.5 msec) and/or at lower field strength (1.5T or
lower) MRI scanners, or in conjunction with field inhomo-
geneity reconstruction160–162 or, more recently, artificial
intelligence (AI)-based deblurring.78

Musculoskeletal
Musculoskeletal RT-MRI is used to reveal abnormal joint
biomechanics, which are linked to joint disorders, usually in
the context of pain, instability, or movement restriction. For
example, abnormal knee kinematics is known to contribute
to the development and progression of osteoarthritis. Com-
mon musculoskeletal applications include the knee, wrist,
spine, temporomandibular joint, foot, and hip,163 with a
selected few illustrated in Fig. 7 and Movies S10–S12. These
have vastly different spatiotemporal resolution and coverage
needs.

Early work used semi-static approaches (multiple static
images in fixed postures). Systematic studies have since deter-
mined that biomechanical models derived from RT-MRI are
substantially different from those derived from semi-static
approaches,167 making RT-MRI the current method of
choice. Musculoskeletal movements are voluntary, and can

FIGURE 6: Illustration of upper airway RT-MRI. (a) Speech production imaging using 13-interleave spiral GRE sequence at 1.5T (TE/
TR = 0.8/6.0 msec, flip angle = 15�, in-plane resolution = 2.4 mm, 12 msec temporal resolution, 83 fps) [Adapted from Ref. (142)]. (b)
Sleep apnea study using simultaneous multislice radial GRE sequence at 3T (TE/TR = 3.7/6.5 msec, flip angle = 5�, slice thickness/
gap = 7/3 mm, 3 slices, in-plane resolution = 1 mm, 96 msec temporal resolution, 10 fps) [Adapted from Ref. (37)]. (c) Swallowing
imaging of 10-ml pineapple juice using radial FLASH sequence (TE/TR = 1.33/2.10 msec, flip angle = 8�, in-plane
resolution = 1.3 mm, 40 msec temporal resolution, 25 fps, 19 spokes) [Adapted from Ref. (143)].

90 Volume 55, No. 1

Journal of Magnetic Resonance Imaging

 15222586, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.27411 by U
niversity O

f Southern C
alifornia, W

iley O
nline L

ibrary on [10/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sometimes be performed through controlled dynamics, for
example where movements are repeated and synchronized
with a metronome or periodic visual stimulus. However, vol-
untary synchronization is imprecise, subject-dependent, and
impractical for patients with pain. Retrospective gating
can be applied using additional sensors168 or self-gating
approaches,169 assuming that the timing variations have a
negligible impact on kinematic estimates. Movement can be
more precisely controlled by a physical apparatus, but this
does not lead to realistic physical effort, which is often needed
to reproduce the abnormal movement and/or the symptom
being studied (eg, pain). Finally, it is possible to synchronize

using external muscle stimulation,170 which adds experimen-
tal complexity. For all of these reasons, there is a need for
RT-MRI, and often a need for an appropriate load.171

Musculoskeletal RT-MRI requires strong contrast
between muscle, fat, and surrounding fluids, and benefits
from high SNR efficiency, making bSSFP the sequence of
choice.172 bSSFP can be augmented with phase-sensitive
reconstruction for fat–water separation.173 GRE may also be
used with optional multiecho fat–water separation.174 Most
studies in the literature were performed at conventional field
strengths (1.5T and 3T) in the supine position, which restricts
movement and load bearing. For this reason, low-field

FIGURE 7: Illustration of three musculoskeletal RT-MRI applications. (a) Knee RT-MRI highlighting flexion, extension, and the
measurement of rectus femoris knee muscle moment arms [Adapted from Ref. (164)]. (b) Wrist RT-MRI illustrating a radial–ulnar
deviation maneuver, suitable for measuring dynamics of the scapholunate gap [Adapted from Ref. (165)]. (c) Temporomandibular
joint RT-MRI illustrating the ability to track condyle movement during voluntary opening of the mouth [Adapted from Ref. (166)].
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open-bore, and upright MRI has been explored as an alterna-
tive to alleviate these restrictions.175

In the knee, RT-MRI has provided valuable insight into
patellofemoral pain, and used to quantify kinematics,176 doc-
ument the differences between the load-bearing and nonload-
bearing kinematics,177 and determine the effects of physical
supports.176 RT-MRI measurement of tibiofemoral kinemat-
ics can be further improved by using slice-to-volume registra-
tion with 3D static scans.178,179 In the finger, 2D RT-MRI
has provided insight into joint cavitation, which is responsible
for the cracking sound.180 In the wrist, 2D and 3D RT-MRI
have provided insight into ligament insufficiency, instability,
and how aberrant kinematics may contribute to wrist
pain.165,181 In the shoulder, low-resolution RT-MRI in con-
junction with high-resolution static MRI was used to better
characterize rotator cuff disease.182 In the temporomandibular
joint, RT-MRI has been demonstrated with adequate spatio-
temporal resolution to track disc and condyle kinemat-
ics.166,183 In summary, RT-MRI is a promising early-stage
technique for studying musculoskeletal kinematic insuffi-
ciency/abnormality and pain in several body regions.

Other
RT-MRI has also been used for other thorax and abdominal
imaging applications. Real-time cine imaging has been used
to assess abnormal bowel motility following ingestion of an
oral contrast agent (eg, mannitol). Bowel imaging is typically
performed in a coronal orientation and bSSFP imaging has
been applied for imaging for 1–3 seconds temporal resolution
per 3D volume (1 to 0.3 fps).184,185 Dynamic esophageal
imaging has been achieved using a radial spoiled gradient
echo acquisition with nonlinear inverse image reconstruction
for 40-msec temporal resolution (25 fps) following the inges-
tion of pineapple juice.186 RT-MRI has also been used in
urethrography, to assess urinary function during bladder
emptying,187 in defecography, to assess the pelvic floor in
mechanical and functional rectal disorders,188 and to asses
pelvic floor disorder and pelvic organ prolapse.189 These tech-
niques often use turbo-spin-echo sequences to achieve T2

weighting, with 1.0–1.5 mm spatial resolution, and a tempo-
ral resolution of 1–5 seconds (1 to 0.2 fps).

RT-MRI has also proven valuable for screening of fetal
central nervous system abnormalities, specifically the struc-
tural malformations.190–192 T2-weighted RARE sequences
(often with partial echo along the phase-encode direction) are
used for beneficial contrast between gray and white matter.

This article focused on the use of RT-MRI in imaging
physical motion; however, it can also be used to image contrast
dynamics. Although this is beyond the scope of this article, this
includes dynamic contrast-enhanced MRI,193 time-resolved
angiography,194 as well as functional MRI,42 including arterial
spin labeling (ASL)195 and encephalography.196

Current Directions
Increasing Role of ML/AI
In recent years, machine-learning (ML) methods, especially
deep learning, have enabled breakthroughs in computer vision
and image analysis. The astonishing success of deep-learning
algorithms has penetrated areas of MR image reconstruction,
artifact correction, automatic classification and segmentation,
landmark detection, and so on.

Deep learning has huge potential in RT-MRI applica-
tions; for example, in real-time visualization and/or immedi-
ate downstream analysis. There have been several early works
on ML with success for RT-MRI applications, as illustrated
in Fig. 8 and Movies S13 and S14. This figure demonstrates
the use of deep learning for various tasks; reconstruction of
RT-MRI data (removing artifact from undersampled radial
images, Fig. 8a), improving image quality of RT-MRI (per-
forming off-resonance deblurring, Fig. 8b), and to enhance
clinical impact (performing needle detection and segmenta-
tion, Fig. 8c). It has been shown to be popular for low-
latency reconstructions of real-time MR data; in 2D cardiac
imaging,93,198,199 MR-guided radiotherapy images,200 and
3D functional MRI.201 Additionally, it is popular for rapid
postprocessing of real-time data; including identification and
segmentation of the vocal tract,202–205 as well as segmentation
of the left and right ventricles from real-time cardiac MRI.206

Other applications include rapid needle detection and seg-
mentation in MR-guided interventions,197,207 enabling real-
time localization of the fetal brain,208 spiral off-resonance
deblurring in speech imaging,78 and a combination of
reconstruction and postprocessing for real-time MR
thermometry.209

Some commercially available software has started using
ML in real-time imaging, including HeartVista,210 which uses
ML to automate the MRI exam, control the scanner and
assist scan planning, and MeVisLab211 for segmentation and
annotation.

High-Performance Low Field
Recent publications have suggested substantial opportunities
for real-time imaging on high-performance low field (HPLF)
MRI systems.212 These systems operate with a low static field
strength (eg, 0.35T and 0.55T) and incorporate contempo-
rary high-performance hardware and modern imaging
methods. Unlike historic low-field MRI systems, these HPLF
systems include fast shielded gradients and multichannel
receiver arrays. They are capable of non-Cartesian sampling,
parallel imaging, and compressed sensing, and can exploit
readily available computational resources. These systems have
produced new capability and exceptional performance for car-
diac, abdominal, and pulmonary RT-MRI, illustrated in
Fig. 9 and Movie S15.
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The HPLF system configuration provides several advan-
tages for real-time imaging. 1) Many RT-MRI acquisitions
are limited by off-resonance (eg, bSSFP, spiral). Since abso-
lute off-resonance (in Hz) scales linearly with field strength,
lower field strength systems relax this constraint. For bSSFP
acquisitions, longer TRs can be used without banding arti-
facts. For spiral sampling, longer readouts can be used with-
out blurring artifacts. 2) T2* is longer, making it possible for

efficient data-sampling strategies, including spiral and EPI
and to be implemented with prolonged duration. This allows
increased flexibility in trajectory design. Moreover, artifacts
related to susceptibility (eg, blurring and ghosting) are
reduced. 3) T1 is shorter at lower field strength, causing more
rapid signal recovery between RF pulses. 4) Tissue heating
due to RF is reduced at low field, which permits high flip
angle excitation and magnetization preparation pulses, with

FIGURE 8: Illustration of three ML/AI-based low-latency applications. (a) Image reconstruction of cardiovascular imaging; (left-to-
right) the BH-bSSFP sequence and the RT radial sequence reconstructed with gridding, GRASP, and the residual U-Net [Adapted
from Ref. (93)] (b) Spiral off-resonance deblurring of speech imaging; (left-to-right) GT, uncorrected, IR with GT field map, and the
CNN [Adapted from Ref. (78)]. (C) Needle detection and segmentation for ex vivo tissue RT-MRI; (left-to-right) Original image,
needle detection and segmentation result using Mask R-CNN, result comparison against a reference [Adapted from Ref. (197)]. Note
that “processing time” shown here is the time to run the neural networks and does not include the time to do preprocessing of the
data. BH: breath-hold, GRASP: Golden-angle radial sparse parallel imaging, PT: processing time, GT: ground truth, IR: iterative
reconstruction.
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diminishing concerns of patient safety during prolonged real-
time imaging. The net result is a favorable system configura-
tion for real-time imaging.

HPLF is especially beneficial for MR-guided interven-
tions, due to the favorable low SAR properties. Reduced
device heating will enable the application of commercial con-
ductive devices in the MRI environment, and reduce the bur-
den of design for new devices, which is substantial at
conventional field strengths (≥1.5T).213 HPLF is also benefi-
cial for real-time speech imaging, where susceptibility gradi-
ents at air–tissue interfaces are the primary constraint.

Finally, an HPLF system could be cost-effective to
manufacture, install, and maintain, which may increase
accessibility for these real-time imaging applications outside
of the conventional radiology environment (eg, cardiology
and point-of-care settings). Currently, the B0 subsystem
comprises roughly 30% of system cost.214 Therefore, a
reduction in field strength and potential complexity (ie, sim-
plified cooling and maintenance) could enable an attractive
value system.

Concluding Remarks
MRI has historically been applied to static imaging of the
brain, spine, and joints, due to its relatively slow speed.
Leaps in MRI technology and information extraction over
the last two decades have made it possible to image more
broadly, including areas of the body that experience sub-
stantial motion and even irregular motion, and including
the real-time guidance of interventions. RT-MRI has a rich
history and an even brighter future. It is a key enabling
technology for MRI to penetrate new diagnostic and inter-
ventional applications.
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