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Purpose: To develop and evaluate an efficient precontrast T1 mapping technique 
suitable for quantitative high-resolution whole-brain dynamic contrast-enhanced–
magnetic resonance imaging (DCE-MRI).
Methods: Variable flip angle (VFA) T1 mapping was considered that provides  
1 × 1 × 2 mm3 resolution to match a recent high-resolution whole-brain DCE-MRI 
protocol. Seven FAs were logarithmically spaced from 1.5° to 15°. T1 and M0 maps 
were estimated using model-based reconstruction. This approach was evaluated 
using an anatomically realistic brain tumor digital reference object (DRO) with 
noise-mimicking 3T neuroimaging and fully sampled data acquired from one healthy 
volunteer. Methods were also applied on fourfold prospectively undersampled VFA 
data from 13 patients with high-grade gliomas.
Results: T1-mapping precision decreased with undersampling factor R, although-
whereas bias remained small before a critical R. In the noiseless DRO, T1 bias was 
<25 ms in white matter (WM) and <11 ms in brain tumor (BT). T1 standard de-
viation (SD) was <119.5 ms in WM (coefficient of variation [COV] ~11.0%) and 
<253.2 ms in BT (COV ~12.7%). In the noisy DRO, T1 bias was <50 ms in WM and 
<30 ms in BT. For R ≤ 10, T1 SD was <107.1 ms in WM (COV ~9.9%) and <240.9 
ms in BT (COV ~12.1%). In the healthy subject, T1 bias was <30 ms for R ≤ 16. At 
R = 4, T1 SD was 171.4 ms (COV ~13.0%). In the prospective brain tumor study, T1 
values were consistent with literature values in WM and BT.
Conclusion: High-resolution whole-brain VFA T1 mapping is feasible with sparse 
sampling, supporting its use for quantitative DCE-MRI.
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1  |   INTRODUCTION

Dynamic contrast-enhanced–magnetic resonance imaging 
(DCE-MRI) is a powerful imaging tool that can reveal the 
spatial distribution of vascular parameters, including perme-
ability and plasma volume, through tracer-kinetic (TK) mod-
eling.1,2 It involves collecting a series of T1-weighted images 
during the arrival and passage of a T1-shortening contrast 
agent.3,4 Quantitative DCE-MRI has shown value in diag-
nosing and monitoring of various brain diseases, including 
tumors,5,6 multiple sclerosis,7,8 and Alzheimer disease.9

Widespread clinical application is limited by low spatial 
resolution, insufficient spatial coverage, and long data acqui-
sition. Recent studies have overcome these limitations using 
parallel imaging techniques10,11 and compressed sensing,12 
or model-based reconstruction techniques to simultaneously 
achieve high spatial resolution and whole-brain coverage. 
For example, Lebel et al demonstrated a method combining 
compressed sensing and parallel imaging,13 which was later 
validated in patients with brain tumors by Guo et al.14 Several 
more recent works have showed the benefits of model-based 
reconstruction that incorporate the model used for DCE  
parameter quantification. For example, Dickie et al proposed 
joint estimation of T1 and tracer-kinetic maps15 to improve 
accuracy and precision. Guo et al developed a direct estima-
tion of tracer-kinetic parameters16 and a joint estimation with 
patient-specific arterial input function.17 Lingala et al used 
dictionary-based constraints.18 Most of these previous works 
either employed fully sampled T1 mapping, which is not fea-
sible in the clinic, or assumed a fixed T1 value for brain tis-
sue, which is not realistic.

Precontrast M0 and T1 maps with matching spatial res-
olution and coverage are required for these methods to be 
practically applied in patients. This can be achieved via 
variable flip angle (VFA)19 or inversion recovery (IR)20 im-
aging. IR is considered the gold standard for T1 mapping, 
and substantial bias exists between VFA and IR. Despite this 
bias, VFA is the most widely used approach for precontrast 
T1 mapping in DCE-MRI because it is faster and acquisition 
parameters can be precisely matched to the three-dimensional 
(3D) spoiled gradient recalled echo (SPGR) sequence that is 
used for the main DCE-MRI scan. However, high-resolution 
whole-brain full-sampling VFA imaging may be impracti-
cal because of the long scan time required. This leads to an 
unmet need for resolution- and coverage-matched rapid pre-
contrast T1 mapping. Lebel et al showed that T1 mapping is 
feasible using sparsely sampled VFA acquisition integrated 

with DCE-MRI.21 Maier et al showed sparse T1 mapping es-
timation using total variation (TV) and total generalized vari-
ation (TGV) constraints22 in healthy volunteers. Note that the 
appropriateness of spatial smoothness constraints in patients 
with brain tumors is unclear because of potential T1 hetero-
geneity. These works collectively show the potential value of 
model-based and/or constrained reconstruction techniques to 
accelerate VFA T1 mapping.

In this work, we evaluate a time-efficient direct T1 map-
ping approach specifically for high-resolution whole-brain 
quantitative DCE-MRI in patients with brain tumors. We use 
a brain tumor digital reference object (DRO) to determine 
accuracy under both noiseless and 3T-mimicking scenarios. 
We evaluate the approach in vivo by retrospectively under-
sampling fully sampled VFA data from a healthy volunteer to 
identify possible artifacts and image quality issues. Finally, 
we apply the approach to prospectively undersampled VFA 
scans to assess heterogeneity of T1 measurements in patients 
with high-grade gliomas.

2  |   METHODS

2.1  |  Variable flip angle T1 mapping

VFA mapping involves the collection of a series of T1-
weighted SPGR images with different prescribed FAs � i.  
VFA imaging is sensitive to B

+

1
 inhomogeneity,23 which 

requires the acquisition of a B+

1
 scale map (b1) to estimate 

actual FAs �i = b1� i. We use the SPGR steady state signal 
model that describes signal Di as a function of M0, T1, actual 
flip angle �i, and TR:

where E10 = e
−

TR

T1 . Note that the effect of T∗

2
 decay is neglected 

due to short and unchanging TE. Voxel-based pre-contrast M0 
and T1 values can be efficiently estimated through a SPGR 
model fitting process:
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where A =

[
sin�i Dicos�i

]
, as described by Deoni et al.23,24 

Note that M0 and T1 are jointly estimated and are, therefore, 
correlated. In this work, we focus on T1 accuracy and precision 
because it is crucial for quantitative DCE-MRI25,26 and is mea-
sured in meaningful physical units. The Appendix A contains 
an analysis of the impact of a precontrast T1 mapping error on 
quantitative DCE-MRI.

2.2  |  Sparse T1 estimation

When VFA data/images are undersampled, it is possible 
to perform sparse image reconstruction for each FA before 
T1 estimation on a voxel-by-voxel basis.27-29 However, this 
does not leverage shared information across the images. 
Alternatively, T1 mapping can be performed for the entire 
volume in a single step directly from the undersampled  
k-space data. This skips the intermediate step of forming im-
ages for each FA, and instead relies on accurate forward mod-
els. The key benefit is that T1 information is extracted from 
the data in an optimal way, from an information-theoretic 
perspective. Details of the sampling pattern are provided 
in the Supporting Information and illustrated in Supporting 
Information Figure S1.

2.3  |  Direct T1 estimation

Direct T1 estimation can be performed by solving the follow-
ing inverse problem:

Data consistency measures the distance between the for-
ward signal model applied to the estimate and the sampled 
data at measured locations in (k, FA) space, where Fu is the 
undersampled Fourier transform operator, S is the coil sen-
sitivity, D is the steady state SPGR forward model includ-
ing the measured b1, and d is the measured k-space data. 
A necessary condition for the problem to be well-posed is 
that the number of measurements are larger than the num-
ber of unknowns, for example, NFAdim(C)

R
 > 2N , where C is 

the subspace spanned by coils, N  is the number of voxels, 
and R is the undersampling factor. This indicates that the 
problem will be ill-posed if R > NFAdim(C)

2
. Ideally, dim (C) is 

equal to number of coils, Nc, if coils are linearly indepen-
dent to each other. In this work, the aforementioned prob-
lem is solved using the nonlinear conjugate gradient (NCG) 
method initialized with M0 = 0 and T1 = 1000 ms within 
the field of view.

2.4  |  Evaluation in a digital reference object

An anatomically realistic DRO30,31 was used to evaluate ac-
curacy and precision of M0 and T1 maps as a function of noise 
level and the undersampling rate. Each healthy tissue type in 
the DRO was assigned T1 values based on the literature,32 
for example, 1084 ms for WM, and M0 values were normal-
ized with respect to cerebrospinal fluid (CSF). To the best of 
our knowledge, a brain tumor such as a glioma, has T1 val-
ues longer than healthy tissues, with the literature reporting 
1392-3601 ms.33-35 Therefore, we set T1 to be 2000 ms for  
BT in the DRO. The DRO has a matrix size of 256 × 256 × 12,  
matching a spatial resolution of 0.94 × 0.94 × 5 mm3. 
Simulated scan settings, for example, FA, pulse repetition 
time (TR), and echo time (TE), are identical to our in vivo 
experiment settings, including phase encoding in the axial 
plane. An eight-channel coil sensitivity map was simulated 
based on in vivo measurement at 3T MRI scanner (HD23; 
GE Healthcare). Noise was simulated at a level matching 
typical 3T MRI at our center, and one order of magnitude 
lower and higher. Undersampling factors in range from 1× 
to 40× were considered for the noiseless case. In the noise-
less case, for each undersampling factor we considered up to 
10 different realizations to account for potential variability 
in the sampling. For experiments under noise corruption, we 
considered undersampling factors ranging from 1× to 40×, 
each factor with one sampling pattern realization and up to 50 
noise realizations, which was found enough to stabilize esti-
mation of bias and standard deviation (SD) of T1 estimates.

Our analysis focused on white matter (WM) and brain 
tumor (BT) regions of interest (ROIs). T1 values within these 
ROI’s are reported in histograms for each undersampling 
factor and/or noise level. We also compare reconstructed T1 
values with the assigned ground truth. Mean and SD of T1 
values are plotted as a function of the undersampling factor, 
and the coefficient of variation (COV) is computed to numer-
ically reflect the accuracy and precision of the results and 
their evolution as the undersampling factor increases.

2.5  |  In vivo experimental methods

In vivo experiments were performed on a clinical 3T MRI 
scanner (MR750; GE Healthcare) with a 12-channel head–
neck–spine receiver coil. Imaging protocols were approved 
by the relevant institutional review board; all subjects pro-
vided written informed consent. B+

1
 mapping was performed 

using the Bloch-Siegert approach.36 Data were acquired with 
a coronal slab orientation, with superior-inferior as the read-
out direction. The VFAs were logarithmically spaced from 
1.5° to 15°. Acquisition settings: TR = 4.9 ms, TE = 1.9 ms, 
field of view (FOV) = 240 × 240 × 240 mm3, slice thickness 

(3)
(
M0, T1

)
= min

M0,T1

1

2

‖‖‖FuSD
(
M0, T1, �

)
− d

‖‖‖
2
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= 2 mm, and matrix size = 256 × 240 × 120. The pulse  
sequence was derived from the vendor product sequence and 
modified to acquire specific phase encodes and tip angles; 
the sequence used slab-selective excitations and the RF and 
gradient spoiling were unchanged.

For the retrospective study (one healthy volunteer, full 
sampling), the acquisition time was 16 min and 48 s. For the 
prospective study (13 patients), the acquisition time was 576 
s consisting of both T1 mapping (245 s) and sparse DCE (5 s/
frame, contrast injection at ~4 min), and a fully sampled 40 ×  
40 phase-encoding grid of the k-space center was acquired 
for FA = 1.5° (8 s of scan time) for coil sensitivity estimation. 
The coil sensitivity maps were estimated from this image, by 
dividing the individual-coil low-resolution anatomic images 
by the coil-combined image. There is also a brief transient 
approach to steady state every time there is a change in the 
applied FA. We discarded the first 4.5 seconds for the first 
FA, and the first 2 seconds for each subsequent FA. This was 
adequate to ensure spins were within ±7% of their steady-
state value for T1s in the range 1300 to 2500 ms.

All reconstructions were performed offline. Tissue masks 
(eg, WM) for fully sampled healthy volunteer data were  
extracted using the FMRIB's Automated Segmentation  
Tool (FAST) toolbox37 (https://fsl.fmrib.ox.ac.uk/fsl/fslwi​ki/
FAST) using fully sampled images at 10.22°, which had the 
best gray matter (GM)–WM contrast-to-noise ratio.

2.6  |  Evaluation in a healthy adult

Fully sampled VFA measurement was obtained from one 
healthy adult volunteer (M/26). Raw data were retrospec-
tively subsampled in (k-, FA) space with undersampling 
factors ranging from 1× to 40×, each with up to 10 realiza-
tions of the randomized sampling pattern. Our analysis fo-
cused on WM ROIs. Results are reported and analyzed in a 
similar fashion as for noisy DRO study, except that T1 maps 
estimated from fully sampled scans served as reference. In 
addition, a T1 spatial map and an absolute fractional differ-
ence spatial map were employed to show spatial patterns in 
T1 values.

2.7  |  Prospective application to patients with 
brain tumors

Methods were evaluated prospectively in 13 patients with 
high-grade glioma brain tumor (four males and nine females, 
age range 42–80 years). These data were acquired between 
December 2016 and April 2019. The vendor-provided 3D 
spoiled gradient echo sequence was modified to include 
sparse VFA sampling with R = 4 before sparse DCE-MRI, 
as described by Lebel et al.21 The resulting T1 maps were 

qualitatively evaluated by a neuroradiologist for visual qual-
ity (noise, tissue inhomogeneity, tissue differential), evidence 
of tumor, postsurgical cavity, and artifacts. These maps were 
also given a qualitative score on a three-point Likert scale. 
The score was defined as follows: 0 = nondiagnostic because 
of artifacts and/or difficulty visualizing tissue boundaries;  
1 = diagnostic, may have mild artifacts, adequate visualiza-
tion of tissue boundaries; 2 = diagnostic with high quality, no 
visible artifacts, and well-defined tissue boundaries).

Small ROIs were manually drawn for WM, BT, and tem-
poralis and surgical cavities; mean and SD of T1 values are 
reported for these ROIs. The ROIs of the tumor were hand-
drawn by a board-certified neuroradiologist with 9 years of 
experience. They were selected based on the imaging mor-
phology and signal intensity of the tumoral and peritumoral 
tissue. The selections were based on the assessment of the 
imaging features, including regional mass effect, volume loss, 
and findings suggestive of cellular tumor (based on a visual 
qualitative assessment of the T1 mapping signal compared 
with other intracranial structures), which are all findings that 
are commonly used to assess for neoplasm on conventional 
MRI sequences.

3  |   RESULTS

3.1  |  Validation using a digital reference 
object

Figure 1 shows the results of noiseless and 3T-mimicking 
noisy DRO cases. Results gathering 10 undersampling realiza-
tions and results gathering 50 noise realizations are reported 
for noiseless and noisy cases, respectively. The SNR level of 
50 is chosen for display because it is the closest to our clinical 
protocol. In Figure 1A,B,E,F histograms of both tissues be-
have as approximately impulse for R ≤ 10, and approximately 
Gaussian for R ≥ 16 for noiseless cases. In the noisy cases, his-
tograms are approximately Gaussian for R ≤ 10 and are almost 
flat for R ≥ 16. This can be also seen numerically from Figure 
1C,D,G,H. As expected, T1 SD gets monotonically larger with 
higher undersampling factor. In the noiseless case, when R ≤ 
10 (VFA scan time ≥137.63 s), the T1 bias is <1 ms and SD 
is <40 ms for both tissues. In the 3D-mimicking case, when 
R ≤ 10, the T1 bias is <10 ms and SD is <110 ms (WM) and 
<250 ms (BT), and when R > 16, the T1 mean starts changing 
randomly and its SD overshoots in BT.

3.2  |  Validation in a healthy adult volunteer

Figure 2 shows the results of T1 mapping using healthy volun-
teer data. As undersampling increases, the histograms become 
broader and have thicker tails (Figure 2A). This matches what 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
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we observe in Figure 1. Bias is small until R ≥ 16, and SD 
increases with higher undersampling factor, but imprecision 
caused by this method is not detectable until R ≥ 10. When R 
≤ 10 (VFA scan time ≥100.8 s), Figure 2B, C show T1 map-
ping bias <11 ms, and SD is <214 ms (COV <15%).

Figure 3 shows a series of T1 spatial maps of a represen-
tative healthy volunteer for each undersampling factor, and 
the associated absolute fractional difference maps. When R 
≤ 10, there is less error within WM and GM in which mean 
fractional difference was <8.46% and <14.76%, respec-
tively, and error concentrated around tissues of less interest. 

For example, bias in CSF and temporalis is, respectively, 
>1278.5 ms and >156.9 ms. No spatial patterns related to the 
data sampling method were observed. As R increases, we can 
observe error starting to increase in the WM and GM regions.

3.3  |  Demonstration in patients with 
brain tumors

The prospective data set contained a variety of tumor lo-
cations and time points during treatment. Demographics, 

F I G U R E  3   Illustration of T1 spatial 
and absolute fractional difference maps from 
the healthy volunteer. Direct reconstruction 
of the fully sampled data is taken as the 
reference. Qualitatively, for  
R ≤ 10, we see minor error in white matter 
(WM) or gray matter (GM). Errors appear 
isolated to cerebrospinal fluid (bias > 
1278.5 ms, standard deviation [SD] > 557.6 
ms) and muscle (bias > 156.9 ms, SD > 
209.8 ms), whose T1 values are generally 
less of interest in brain dynamic contrast-
enhanced–magnetic resonance imaging. 
Importantly, no spatial patterns indicating 
systemic errors were observed in the error 
maps. For R > 10, we observed severe error 
corruption of T1 maps in GM and WM 
regions

F I G U R E  2   Healthy volunteer results. Fully sampled data sets were retrospectively undersampled with 10 realizations of the pseudorandom 
data sampling pattern. (A), White matter (WM) T1 histogram as a function of undersampling factor. (B), Mean T1. C, T1 standard deviation (Std) 
as a function of variable flip angle (VFA) scan time. VFA scan time axis is in logarithmic scale. The mean T1 from fully sampled data is shown as 
the blue dashed line in (B). Bias is insignificant (<30 ms) until R ≥ 16. Precision gets worse with a higher undersampling factor, but imprecision 
caused by this method is not detectable until R ≥ 10. When R ≤ 10 (VFA scan time ≥100.8 s), T1 mapping bias is <11 ms, and SD is <214 ms
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qualitative diagnostic scores, and T1 values of WM, BT, 
and temporalis and cavity-fillings are reported in Table 1. 
BT T1 values are reported from the time point with the 
most clear and substantial evidence of tumor, determined 
based on the longitudinal progression verified by contrast 
enhancement. No distinct artifacts were observed. One 
case received a qualitative score of 1, and this case has 
strong T1 inhomogeneity in CSF. All other cases received 
a qualitative score of 2. Out of 13 cases, three showed 
no obvious tumor based on T1 and postcontrast readings, 
whereas all other cases showed brain tumor and/or post-
surgical abnormalities. There is noticeably higher SD in 
temporalis T1, and cavity-fillings have substantially longer 
T1 (>4000 ms) than WM and BT. Figure 4 shows three 
representative examples with orthogonal cross sections of 
each tumor. These maps show clear T1 differentiation of 
WM, GM, and BT abnormality regions, as well as postsur-
gical cavities, with high spatial resolution. Figure 5 shows 
zoomed versions of the same T1 maps that showcase the 
ability to capture T1 heterogeneity.

4  |   DISCUSSION

This study evaluated the direct estimation of native M0 and T1 
maps at 3T through simulation, as well as in in vivo studies of 
a healthy subject and patients with brain tumors. Simulations 
in DROs revealed T1 measurement variability of this ap-
proach to be dominated by noise at undersampling factors 
≤10, whereas errors caused by undersampling dominated 

above. We anticipate this cutoff point to differ for other field 
strengths (eg, 1.5T), coil configurations, protocols (eg, reso-
lution, FOV), anatomies (eg, breast, prostate) and imaging 
tasks (eg, other quantitative MRI applications). Simulation 
on noise corrupted T1 measurements also showed the T1  
errors in BT to be more susceptible to undersampling than in 
WM regions. Therefore, it is important to focus performance 
analysis on clinically relevant regions of interest rather than 
global metrics.

We used a 3D Fourier transform acquisition with 
Cartesian spiral subsampling because it is important to 
maintain the same spatial distortions between the T1 map-
ping and the DCE sequence. These are largely impacted 
by the pulse sequence, prescription, and readout trajectory 
and bandwidth. A limitation of this study is that we did not 
compare different subsampling approaches. Such an analy-
sis has been performed for sparse DCE-MRI acquisitions.31 
We used the same subsampling strategy for T1 mapping as 
is being used for sparse DCE-MRI at our institution.

Results of retrospective in vivo scans were consistent 
with results from the 3T-mimicking noisy DRO, which con-
firms the ability of the simulation to predict in vivo perfor-
mance. Specifically, both T1 mean and SD values increased 
with higher undersampling, as shown in Figures 1C,D and 
2B,C. Up to the critical undersampling factor of 10, the trend 
can be explained by noise amplification related to parallel  
imaging because the increase was only observed in the noisy 
cases. However, for undersampling factors above 10, the for-
mulated problem becomes ill-posed, causing variations in the 
mean and increased SD in both noisy and noiseless cases. We 

T A B L E  1   Patient demographics, qualitative scores, and T1 values for white matter and brain tumor regions of interest

Sex Age Diagnostic score WM T1 (M ± SD) ms BT T1 (M ± SD) ms Muscle T1 (M ± SD) ms Cavity T1 (M ± SD) ms

F 59 2 895.0 ± 166.9 1763.2 ± 241.0 1517.8 ± 260.1 2564.3 ± 603.8

F 60 2 1003.5 ± 118.7 N/A 1683.8 ± 594.5 4621.4 ± 606.3

F 56 2 1000.4 ± 82.2 2314.3 ± 284.4 1636.0 ± 559.2 4638.4 ± 563.7

M 49 1 1094.2 ± 161.9 1856.7 ± 201.2 1444.6 ± 438.6 4541.8 ± 757.6

M 62 2 1086.4 ± 65.9 1981.6 ± 177.7 1582.9 ± 295.1 N/A

F 58 2 933.1 ± 79.9 1994.0 ± 257.7 1449.5 ± 255.0 N/A

F 71 2 1193.2 ± 92.3 N/A 1530.3 ± 256.7 4845.7 ± 506.9

M 80 2 1146.2 ± 65.2 1592.0 ± 128.7 1387.3 ± 429.7 N/A

M 42 2 1126.7 ± 142.0 N/A 1627.3 ± 374.1 5066.8 ± 865.7

F 71 2 1115.5 ± 84.2 1894.1 ± 227.4 1512.9 ± 364.1 3607.1 ± 530.5

F 61 2 1000.8 ± 51.3 1680.8 ± 155.2 1692.3 ± 356.2 4229.2 ± 265.6

F 67 2 1040.0 ± 66.2 1790.7 ± 99.0 1570.5 ± 152.0 2801.6 ± 180.7

F 52 2 1048.2 ± 92.8 1726.0 ± 177.5 1576.7 ± 397.3 N/A

Note: Volume T1 data sets were qualitatively scored by a neuroradiologist using the following Likert scale: 0 = nondiagnostic; 1 = diagnostic with mediocre quality; 2 
= diagnostic with high quality. Small ROIs were manually drawn to also yield T1 measurements, reported as mean ± SD.
Abbreviations: BT, brain tumor; F, female; M, male; N/A, not applicable; ROIs, regions of interest; SD, standard deviation; WM, white matter.
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expect that this “critical R” is dependent on several factors, 
including the receiver coil configuration and the number of 
VFAs. For example, the critical R” is likely to be larger if one 

uses higher-density coil arrays that provide greater degrees of 
freedom in the subspace spanned by the coil sensitivity maps.

We noticed no spatial patterns related to data sampling in 
the T1 error maps at R ≤ 10 in the healthy volunteer study. 
There were, however, mild spatial variations in T1 error with 
tissue type. For instance, we saw negligible error in WM and 
higher error in CSF. This is consistent with the expected re-
duction in T1 precision as true T1 increases. The proposed 
method was successfully applied to a small cohort of patients 
with high-grade glioma. The T1 values in BT regions are het-
erogeneous and are longer than those of WM in the same 
subjects with values consistent with the literature33-35 (1392-
3601 ms).

We observed spatial heterogeneity and the presence of 
sharp features in BT ROI’s. This indicates the need for pre-
contrast T1 mapping to provide equally fine spatial resolu-
tion compared with DCE-MRI and indicates that the use of 
spatial constraints/regularization could mask these features. 
Parametric constraints along the FA dimension or appropri-
ately defined low-rank constraints may be viable. The pro-
posed method allowed clear visualization of postsurgical 
cavities that have substantially longer T1 values. The pro-
posed method depicted the expected tissue boundaries with 
high spatial resolution and whole-brain coverage, provid-
ing adequate quality for voxel-wise quantitative DCE-MRI. 
However, we were not able to observe clear boundaries be-
tween cellular tumor and cavities, likely because there could 
be mixture with more complicated T1 characteristics, such as 
edema.

Error propagation analysis revealed that ±15% error in 
mean brain-tumor T1 results in at most 0.008 and 0.007 
min−1 (Patlak model), and 0.016 and 0.033 min−1 abso-
lute error extended Tofts-Kety (ETK) model in the DCE 
estimated pharmacokinetic parameters, vp and Kt, respec-
tively. However, there are many dependencies, and error 
propagation depends on the TK model, true T1 and the 
polarity of the error. TK error is always positively related 
to precontrast T1 error in the Patlak model; however, the 
relationships for the ETK model are more complicated as 
discussed in the Appendix A.

This study has several limitations. First, there is a gen-
eral lack of commonly accepted glioma T1 values likely be-
cause of intertumor heterogeneity because of factors such 
as tumor grade, age, and treatment. For this reason, realistic 
simulation of brain tumors in DROs remains challenging 
and possibly suboptimal in terms of its ability to accurately 
capture real-brain DCE-MRI examinations. This study ad-
dresses this with a range of parameter values based on the 
published literature, and refinement of this approach is sub-
ject to future research.

The second limitation consists of only using one healthy 
subject for in vivo validation of the proposed method. 
Acquiring fully sampled VFA scans is time consuming, 

F I G U R E  4   Representative M0 and T1 maps from three patients 
with high-grade glioma. Maps are volumetric, and axial, coronal, and 
sagittal slices through the tumor section for each patient (the first, the 
third, and the fifth row). M0 maps with tumor region of interest drawn 
in red (the second, the fourth, and the sixth row). T1 maps showing good 
delineation of white matter (WM), gray matter (GM), cerebrospinal 
fluid, and tumor. WM and GM regions have the expected homogeneity. 
In addition to tissue differential, these maps also reveal the locations of 
craniotomy (green arrow) and postsurgical cavities (blue arrow) that are 
filled with proteinaceous fluid such as blood in high spatial resolution



2242  |      ZHU et al.

which impedes the generation of larger data sets for this 
study. For identical reasons, acquiring such scans for pa-
tients with brain tumors as the target cohort was not prac-
tical because of the severity of the disease and patient 
unwillingness to consent to such extensive research exam-
inations. Tumor ROIs were directly drawn on the T1 maps 
to be evaluated, which caused circularity in the patient study 
that we were unable to avoid.

Failure to account for magnetization transfer (MT) and 
motion effects is the third limitation of the study. Better ac-
curacy and precision may be achieved by incorporating MT 
and head motion modeling, or by implementing controlled 
saturation MT introduced by Teixeira et al.38 An example of 
showing improved MT-balanced VFA T1 mapping has been 
shown by Lee et al.39

The fourth limitation is that the FA settings were not opti-
mized for this application. We used seven FAs logarithmically 
spaced from 1° to 15° based on the expectation that T1 values 
in BT ROIs can fall in a broad range. We used a large number 
of FAs to improve sensitivity over this broad range of T1, but 
this was not optimized via simulation or phantom experiment.

Finally, the proposed reconstruction involves a nonlin-
ear and nonconvex optimization problem. This is compu-
tationally complex and can be numerically unstable. In the 
prospective study, reconstruction required roughly 3 h per 
3D data set, on a computation node of the USC Center for 
Advanced Research Computing. The long reconstruction 

time is caused by the recurring gradient computation. This 
can be potentially shortened with better initial guesses such 
as low-resolution estimates of M0 and T1 maps.

In this study, 10-fold undersampling was found to be the 
upper bound for adequately accurate precontrast T1 map-
ping. This result is specific to the body part and disease of 
interest, and our DCE-MRI setup, including field strength, 
receiver coil, and imaging parameters. To apply this approach 
to a different scanner or body part and disease, we suggest 
starting with a disease-appropriate DRO, locally measured 
coil-sensitivity profiles, and noise-covariance measurements. 
Then repeat the steps in this article to determine the under-
sampling limit. We have provided software to facilitate this 
process (see Data Availability Statement).

5  |   CONCLUSION

We have shown the feasibility of direct precontrast T1 map-
ping suitable for high-resolution whole-brain quantitative 
DCE-MRI, with 150 s of VFA scan time. The proposed 
method is validated in DROs and in one healthy volunteer, 
and achieved T1 bias ≤ 11 ms and COV ≤ 15% at an under-
sampling factor of 4. Prospective application to BT patients 
showed no distinct artifacts, diagnostic image quality, and T1 
maps with high definition and with values consistent with the 
published literature.

F I G U R E  5   Closeup of T1 maps from 
the three patients in Figure 4. Maps are 
zoomed into the tumor region (delineated 
by white dashed box in Figure 4), with 
narrow display range. The proposed 
method captures T1 heterogeneity. T1 
coefficient of variation are 10.84%, 9.96%, 
and 7.31% for the top, middle, and bottom 
rows, respectively. All cases show spatial 
variations in T1. For example, T1 is longer 
in tumor center (eg, light green arrow) than 
in the tumor rim (eg, green arrow) and the 
peritumoral regions (eg, dark green arrow)
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APPENDIX A

IMPACT OF PRECONTRAST T1 
(ERRORS) ON QUANTITATIVE DCE-
MRI (ERRORS)
Here, we summarize the impact of precontrast T1 mapping 
errors on quantitative dynamic contrast-enhanced–magnetic 
resonance imaging (DCE-MRI) tracer-kinetic (TK) param-
eter mapping errors. This is a form of error propagation 
analysis. DCE-MRI TK parameters �, can include Kt, vp, ve,  
etc., depending on the model used. Here, we examine the 
Patlak and extended Tofts-Kety (ETK) models, which are 
commonly used in brain tumor DCE-MRI.

DCE-MRI uses spoiled gradient echo (SPGR) imaging. 
Consider the steady-state SPGR signal equation:

where M0 is the equilibrium magnetization, T1 is the precontrast 
longitudinal relaxation time, C (t) is the contrast agent concen-
tration, � is the flip angle (FA), and E1 (t) = E10e−TR ⋅ r1C(t) with 
E10 = e−TR ⋅R1 and R1 = 1∕T1, according to the fast exchange 
limit (FXL). We can estimate the first-order error by:

Therefore, we must evaluate one partial derivative, which 
is possible using the chain rule:

where � is the TK parameter of interest, for example, vp or Kt. 
We are evaluating the dependence on the estimated T1 (and not 
the DCE scan or vascular input function estimation). Therefore, 
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we compute the partial derivative of estimated concentration 
(C

(
ti
)
) as a function of precontrast T1, given measured DCE 

signals as constants. We differentiate both sides of Equation 
(A1) with respect to (w.r.t. ) to get:

Therefore, we have:

This is the same for all time points. As a result, we have:

Patlak model
Consider first the Patlak model, which is a widely used linear 
compartment model. According to the Patlak model CA con-
centration is a linear function of the tracer-kinetic parameters:

where Cp (t) is the time-varying contrast agent plasma volume 
concentration (mM). Cp (t) is often called the vascular input 
function (VIF). The function should be determined by sampling 
the delivery of contrast agent from a vessel directly interacting 
with the tissue of interest. In this Appendix, three Cp (t)s were 
either generated from different population-based models (Parker 
et al40 and Georgiou et al41) or estimated by averaging multiple 
in vivo data from our patient DCE-MRI study. This model can 
be expressed as a matrix-vector multiplication, as follows:

The solution for 

[
vp

Kt

]
 that minimizes the sum of squared 

residuals (also called the least-squares solution) is:

vp and Kt are linear functions of Ct; therefore, all partial 
derivatives for the least-squares estimator reside as entries in 
the A† matrix as follows:

Extended Tofts-Kety model
As another model widely used in the evaluation of brain tu-
mors, consider the extended Tofts-Kety (ETK) model, which 
has a nonlinear dependence on vascular parameters. The 
ETK model is as follows:

where kep =
Kt

ve

 is a rate constant.

Although the model nonlinearity does not allow for an ex-
plicit solution to the vascular parameter estimator, local first 
derivatives can be obtained through implicit differentiation or 
an additional linearization step. In the following, we assume 
constant ve constant for simplicity.

We take the derivative w.r.t. C
(
ti
)
 on both sides of 

Equation (12) to get:

This will convert the nonlinear model of parameters to a 
linear model of partial derivatives. Thus, we can construct 
another matrix-vector multiplication as follows:
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In which 1i is a column vector whose ith entry is 1, and

When A is evaluated at some Kt = k, the derivatives are the 
least-squares solution to Equation (A14), that is,

Alternatively, we can use linear approximation. A con-
tinuous and differentiable function f (x) can be well approxi-
mated around x = x̃ by

Equation (A12) can be linearly approximated at some 
Kt = k as follows:

In which

We then can construct another matrix-vector multiplica-
tion such as

In which

Like Equation (A10), the least-squares solution to Equation 
(A21) is

Similar to Equation (A11), the derivatives reside as 
follows:

Error propagation analysis
Error propagation analysis was performed for the two TK 
models as outlined in the previous section. The analysis was 
evaluated with three different VIFs and three different kep 
values (if necessary) to show the dependencies on them. In 
addition, all analysis assumed a T1 range of 1700 ± 255 ms, 
roughly matching the mean T1 of brain tumor in our patient 
study with ±15% variations.

Figure A1 shows error propagation analysis results in the 
Patlak model. The first row shows partial derivatives of vp 
and Kt of precontrast T1 values (1700 ± 255 ms). The second 
row shows the first-order error of vp and Kt as a function of 
±255 ms (±15%) ΔT1 for the VIFs by Parker et al40 (blue), 
Georgiou et al41 (red), and the cohort-based in vivo brain 
VIF measured at our institution. As the first row shows, par-
tial derivatives were positive and decreased as T1 increased. 
Consequently, errors in TK parameters were positively re-
lated to T1 errors, and T1 error propagation was slower as T1 
increased. Quantitatively, a ±255 ms ΔT1 results in ±0.0064, 
±0.0043, and ±0.0085 error in vp, and ±0.0074 min−1, 
±0.0053 min−1, and ±0.0028 min−1 error in Kt in Parker’s, 
Georgiou’s, and in vivo measured VIF, respectively.

Figure A2 shows the partial derivatives of vp and Kt of pre-
contrast T1 values (1700 ± 255 ms) in the ETK model. The 
first row shows the two-dimensional (2D) plot of partial de-
rivatives of vp. The second row shows the 2D plot of partial 
derivatives of Kt as a function of both rate constant kep and 
T1. Like the Patlak model, both derivatives monotonically 
decreased as T1 increases; however, they are not monotonic 
functions of kep. Especially for the partial derivative of Kt, it 
reached its positive extreme at kep approximately 0.64, 0.62, 
and 0.54 min−1, and had polarity change at kep approximately 
1.35, 1.32, and 0.92 min−1.

Figure A3 shows the first-order error in vp and Kt as a func-
tion of ΔT1 in the ETK model in the first and second row, 
respectively. Errors are plotted for ±255 ms (±15%) ΔT1 for 
Parker et al’s40 (left), Georgiou et al’s41 (middle), and in vivo 
measured (right) VIFs. Errors were also evaluated at three 
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different kep values to show dependencies on kep. Δvp was pos-
itively related to ΔT1; however, it shrank and then was am-
plified at kep increases. With ±255 ms ΔT1, Δvp extended to 
±0.015, ±0.010, and ±0.016 in maximum at kep = 1.5 min−1 
for Parker et al’s, Georgiou et al’s, and in vivo measured VIF, 
respectively. For ΔKt, the result is more complicated because 
of the derivative polarity change. With ±255 ms ΔT1, ΔKt 
extended to ±0.008, ±0.007, and ±0.020 in maximum at kep 
= 1.5 min−1 for Parker et al’s, Georgiou et al’s, and in vivo 

measured VIF, respectively. Note that kep = 1.5 min−1 did 
not necessarily give the maximum ΔKt; however, it was of 
more interest because high kep values were expected in tumor 
regions.

Briefly, an error of ±15% in mean brain tumor T1 results in 
at most 0.008 and 0.007 min−1 absolute error (Patlak model), 
and 0.016 and 0.033 min−1 absolute error (ETK model) in 
the DCE-estimated pharmacokinetic parameters, vp and Kt, 
respectively.

F I G U R E  A 1   Error analysis in tracer-kinetic (TK) estimation in the Patlak model. The first row shows partial derivatives of vp and Kt of 
precontrast T1 values (1700 ± 255 ms). The second row shows the first-order error of vp and Kt as a function of ±255 ms (±15%) ΔT1. Parker’s 
(blue), Georgiou’s (red), and in vivo measured (yellow) vascular input functions (VIFs) were analyzed. As the first row shows, partial derivatives 
were positive and decreased as T1 increased. Consequently, errors in TK parameters were positively related to T1 errors, and T1 error propagation 
was slower when T1 increased. As the second row shows, a ±255 ms (±15%) ΔT1 results in ±0.0064, ±0.0043, and ±0.0085 errors in vp, and 
±0.0074 min−1, ±0.0053 min−1, and ±0.0028 min−1 errors in Kt in Parker’s, Georgiou’s and in vivo measured VIF, respectively
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F I G U R E  A 2   Partial derivatives of vp and Kt of precontrast T1 values (1700 ± 255 ms) in the ETK model. The 1st row shows the 2D plot of 
partial derivatives of vp, and the 2nd row shows the 2D plot of partial derivatives of Kt as a function of both rate constant kep and T1. Like the Patlak 
model, both derivatives monotonically decreased as T1 increases, however, they are not monotonic functions of kep. Especially for the partial 
derivative of Kt, it had different polarities depending on kep value
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F I G U R E  A 3   The first-order error in tracer-kinetic (TK) parameters as a function of ΔT1 in the extended Tofts-Kety (ETK) model. Errors 
are plotted for ±255 ms (±15%) ΔT1. The first and second row show the first-order error of vp and Kt, respectively, and errors were analyzed using 
Parker’s (left), Georgiou’s (middle), and in vivo measured (right) vascular input function. Errors were also evaluated at three different kep values 
to show dependencies on kep. For vp, the result is similar to that in Patlak model, whereas it is noticeable that Δvp will be amplified at a higher kep 
region, for example, tumor. For Kt, the result is more complicated because of the derivative polarity change for different kep


