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Dynamic contrast-enhanced (DCE) MRI enables as-
sessment of neurovascular parameters by monitoring 

enhancement patterns in tissue after injection of contrast 
agent. Such parameters could provide markers for tumor 
grading in patients with high-grade glioma (1,2) and for 
early brain tumor response to antiangiogenic therapy (3). 
Brain lesions commonly exhibit large regions of spatial het-
erogeneity or thinly enhancing rims around necrotic cores; 
in addition, multifocal metastases may be visible through-
out the entire brain (4). Effective markers therefore require 
high-spatiotemporal-resolution whole-brain DCE MRI 
protocols, as well as accurate and reproducible tracer kinetic 
parameters (3,5,6).

Many attempts have been made to achieve desired spa-
tial resolution and coverage while preserving rapid sampling 

of the temporal evolution of contrast agent dynamics. Al-
though direct estimation of tracer-kinetic parameters from 
undersampled MRI raw data exists (7,8), more commonly, 
constrained reconstruction algorithms reconstruct the image 
time series in an intermediate step (9–11) or simultaneously 
to tracer-kinetic estimation (12). This can be advantageous 
because it offers great flexibility in the estimation of nuisance 
parameters, such as the vascular input function (VIF), which 
is commonly done on the basis of image data.

Extensive efforts by the Radiological Society of North 
America Quantitative Imaging Biomarkers Alliance DCE 
MRI task force and other groups have resulted in stan-
dardization and characterization of Nyquist-sampled DCE 
MRI (13). Although much research has been devoted to 
obtaining 20- to 50-fold undersampled parallel imaging 
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receiver coil between August 2016 and April 2019 at the Seaman 
Family MR Research Centre, Foothills Medical Centre (Calgary, 
Alberta, Canada). Participants were recruited from the Tom 
Baker Cancer Centre and provided written informed consent. 
Data were acquired under a protocol approved by the relevant 
local institutional review board.

Participants were selected from an ongoing imaging study of 
high-grade gliomas. The current study included the first 13 par-
ticipants with a minimum of five longitudinal MRI examina-
tions among a total cohort of 32 participants; the second through 
fourth examinations were used in the current study. Participants 
with fewer than five MRI examinations were excluded. Figure 1 
shows a flowchart of participant recruitment and exclusion crite-
ria. Participants received heterogenous and often-changing phar-
macologic therapy during the three time points. Medications in-
cluded dexamethasone, temozolomide, and clobazam.

Sparse DCE MRI Data Acquisition
Three-dimensional k-space data were continuously acquired dur-
ing a time window of 9.6 minutes (field of view, 240 3 240 3 
240 mm3; voxel size, 0.94 3 1.0 3 2.0 mm3; echo time msec/rep-
etition time msec, 1.9/5). During this time window, the contrast 
agent (Gadovist, Bayer AG) at a dose of 0.1 mL/kg body weight 
was intravenously injected. The readout dimension was fully 
sampled while the phase encode dimensions were acquired along 
rasterized spiral-in trajectories. The B1

+ maps were estimated by 

techniques (9–12), a similar characterization has not yet been 
performed for high-spatiotemporal-resolution whole-brain 
DCE MRI systems with sparse sampling.

Characterization of measurement uncertainty relies on repro-
ducibility studies in controlled test-retest settings. These tend to 
be time consuming, resource demanding, and ethically challeng-
ing to justify. Recruitment of patients with high-grade glioma is 
further complicated by disease severity, which lowers willingness 
of outpatients to accept the inconvenience of non–standard-of-
care retest DCE MRI examinations. This unwillingness prevents 
the full development and characterization of candidate markers 
for individualized therapy and clinical trials (3,14,15). To deter-
mine the intrinsic method uncertainty and hence sample size 
required for larger clinical trials (15), the use of clinical posttreat-
ment data could be an alternative to obtaining true test-retest 
data. By setting the focus on stable tissue types with varying pa-
rameter magnitudes, worst-case estimates for parameter uncer-
tainty in the target brain tumor tissue could be inferred.

In this work, we demonstrate a fully automated, high-spa-
tiotemporal-resolution, whole-brain DCE MRI pipeline with 
30-fold sparse undersampling and no user interaction required. 
We estimate the reproducibility of this proposed pipeline on the 
basis of reference regions of stable tissue types during multiple 
posttreatment time points in patients with brain tumors.

Materials and Methods

Participants
In a retrospective study, we estimated reproducibility of the pro-
posed pipeline among participants with high-grade glioma who 
underwent three consecutive standard-of-care examinations (mean 
interval between examinations, 64 days; range, 35–231 days).  
All data were acquired with a single clinical 3.0-T MRI machine 
(MR750, GE Healthcare) with a 12-channel head-neck-spine 

Abbreviations
COV = coefficient of variation, DCE = dynamic contrast enhanced, 
Ktrans = volume transfer constant, MOCCO = model consistency con-
strained, RC = reproducibility coefficient, ROI = region of interest, 
SPSENSE = sparse sensitivity encoded, VIF = vascular input function, 
vp = plasma volume fraction

Summary
Evaluation of longitudinal millimeter-resolution whole-brain dynamic 
contrast-enhanced MRI bounds the coefficient of variation for median 
volume transfer constant to be less than 57% in healthy tissue regions.

Key Results
 n In this prospective study of 13 participants, an automated, sparsely 

sampled dynamic contrast-enhanced (DCE) MRI reconstruction 
offered spatial resolution of 0.9 mm 3 1 mm 3 2 mm at 5-sec-
ond temporal resolution and full brain coverage.

 n In healthy tissues, pseudo test-retest in sparsely sampled DCE MRI 
estimated median of volume transfer constant (Ktrans) with maxi-
mum reproducibility coefficient (RC) of 0.06 min21 in large, low-
enhancing tissue regions and maximum RC of less than 0.48 min21 
in smaller or more strongly enhancing tissue regions.

 n Millimeter-resolution whole-brain DCE MRI achieved maximum 
coefficient of variation in healthy tissues of less than 57% for  
median Ktrans.

Figure 1: Flowchart of participants and exclusion criteria. Between 
August 2016 and April 2019, a total of 32 patients with brain tumors were 
recruited for sparsely sampled dynamic contrast-enhanced (DCE) MRI 
protocol. After exclusion of all participants with fewer than five DCE MRI 
examinations in this time period, data from second, third, and fourth DCE 
MRI examinations were used for reconstruction with model consistency con-
strained (MOCCO) and sparse sensitivity encoding (SPSENSE) methods.
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the vendor-provided Bloch-Siegert method (16). During the first 
170 seconds of the MRI examination, the flip angle was succes-
sively ramped up from 1.5° to 15° in seven logarithmically spaced 
steps to yield variable flip-angle measurements for high-spatio-
temporal-resolution whole-brain T1 mapping (17). The variable 
flip-angle data were used with a calibration B1

+ map to generate 
precontrast-agent T1 and M0 maps. The last part of the k-space 
data after bolus arrival was binned to 5-second temporal resolu-
tion to monitor contrast enhancement and allow for estimation 
of vascular input functions and tracer kinetic parameter maps. 
Figure 2 illustrates data acquisition and reconstruction steps.

Sparse DCE-MRI Reconstruction Methods
Lebel et  al (10) demonstrated reconstruction of high-spa-
tial-resolution whole-brain DCE MRI time series from 
highly undersampled raw k-space data for tracer-kinetic 
parameter estimation. Guo et  al (12) demonstrated joint 
estimation of tracer-kinetic parameter maps and patient-
specific VIF. In the current study, we extended the sparse 
SENSE (SPSENSE) framework by Lebel et  al (10) and 
the model consistency constrained (MOCCO) method by  
Guo et al (12) with an automated delineation of brain vessels 
based on common image/time series features in the literature 

Figure 2: Image shows schematic of pipeline. A, Three-dimensional k-space data are continuously acquired over time window of ap-
proximately 10 minutes (cubic 240-mm3 field of view with voxel size of 0.94 3 1.0 3 2.0 mm3, echo time of 1.9 msec, and repetition time of 
5 msec). During first part of examination, flip angle is successively ramped up from 1.5° to 15° in seven logarithmically spaced steps to yield 
variable-flip-angle (VFA) measurements for high-resolution whole-brain T1 mapping. VFA data are used with, B, calibration B1+ map to gener-
ate, C, T1 and M0 maps before administration of contrast material. D, Vascular input function (VIF) regions of interest (ROIs), VIF, and tracer 
kinetic (TK) parameter maps for plasma volume fraction (vp) and volume transfer constant (Ktrans) are estimated from second part of k-space data 
(in A), which monitors contrast enhancement at 5-second temporal resolution. DCE = dynamic contrast enhanced.
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(ie, time to peak, full width at 80% maximum, vesselness 
[tubularity of the spatial structure], and enhancement rela-
tive to period before administration of contrast agent) (this 
step was performed by Y.B., an MR scientist with 4 years 
of experience in brain DCE MRI) (18–21). We chose the 
largest connected vessel as a VIF region of interest (ROI). 
We then trimmed the outermost voxels to remove possible 
partial volume-averaging effects. The final VIF was jointly es-
timated (by Y.B.) from the magnitude of image voxels within 
the VIF ROI (22). Baseline proton density and T1 maps were 
estimated at matching spatial resolution and coverage from 
sparsely sampled B1-corrected variable flip-angle T1 mapping 
(this step was performed by R.M.L., an MR scientist with 10 
years of experience in brain DCE MRI) (17). For conversion 
of image intensity to concentration-time curves, we assumed 
the fast exchange limit approximation with fixed relaxivity 
(r1 = 4.5 mM21 s21) and hematocrit value (45%). Concentra-
tion-time curves are assumed to follow the Patlak or extended 
Tofts-Kety model (23,24), where the appropriate tracer ki-
netic model was chosen on the basis of the Akaike informa-
tion criterion (this step was performed by Y.B.) (25,26). To 

account for bolus transit delay, we fit each voxel with three 
VIFs: one as extracted and two other functions shifted by 
plus and minus one time bin. For each voxel, the parameters 
of the best fit were retained.

The source code for data reconstruction and analysis can be 
found on GitHub (https://github.com/usc-mrel/dcemri_pseudo_
test_retest; revision b2b3e4b).

Statistical Analysis
To determine reproducibility of VIF estimation, we deter-
mined the within-case coefficient of variation (COV) (27,28) 
and reproducibility coefficient (RC) (27) of relevant VIF fea-
tures (this step was performed by Y.B.) (28–30). Specifically, 
we determined (a) peak concentration and (b) area under the 
curve, both of which are crucial for accurate tracer-kinetic es-
timation, and (c) area under the first pass, which is important 
for cerebral blood flow measurement.

The advent of high-spatial-resolution DCE MRI protocols 
has led to increased interest in histogram analyses and 
histogram-derived statistics to analyze tumor heterogeneity 
(31). To determine reproducibility of histogram analysis of 

Figure 3: Representative parameter maps of dynamic contrast-enhanced MRI examination in a 59-year-old woman in axial, coronal, and sagittal views for model 
consistency constrained (MOCCO) and sparse sensitivity encoding (SPSENSE) frameworks. A, Baseline maps for radiofrequency inhomogeneity (B1+), baseline T1, and 
proton density map M0. B, C, Images obtained after administration of contrast agent with regions of interest for vascular input functions on internal jugular veins, transverse 
and sigmoid dural venous sinuses (red), plasma volume fraction (vp), and volume transfer constant (Ktrans) for MOCCO and SPSENSE, respectively.
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tracer kinetic parameters, ROIs were manually drawn on five 
different enhancing tissue types: normal-appearing white 
matter, the mucosal surface of the nasal mucosa, the choroid 
plexus, scalp fat, and the temporalis muscle (performed by 
Y.B. and J.A., a board-certified neuroradiologist with 9 years 
of experience in head, neck, and spine imaging). The ROIs 
were not drawn on tumor tissue because of postresection 
ambiguity and possible tumor progression.

To determine reproducibility of potential markers and 
the underlying histograms for tracer-kinetic parameters—
plasma volume fraction (vp) and volume transfer constant 
(Ktrans)—we computed the COV and RC for the robust his-
togram statistics of median and 95th percentile (this step 

was performed by Y.B.) (13,15). Statistical analysis was per-
formed in Matlab, version R2018a (MathWorks).

Results

Participant Characteristics
We estimated reproducibility of the proposed pipeline using 
the DCE MRI examinations of 13 participants with high-
grade glioma (mean age 6 standard deviation, 61 years 6 
10; nine women). Table E1 (online) summarizes participant 
demographic characteristics, tumor types, and time inter-
vals between successive examinations. A flowchart illustrat-
ing recruitment of 32 patients with brain tumors and the 

Figure 4: Graphs show representative vascular input functions (VIFs) for different participants, visits, and methods. Each row corresponds to a dif-
ferent participant. Left column shows model consistency constrained (MOCCO) reconstruction, and right column shows VIFs estimated from sparse 
sensitivity encoded (SPSENSE) image time series. All VIFs show blood concentration.
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criteria for exclusion of 19 participants from this study is 
shown in Figure 1.

DCE MRI Examination
Figure 3 illustrates outputs of the fully automated DCE MRI 
pipeline for one representative tumor case in a 59-year-old 
woman. It includes spatial maps of B1

+, precontrast-agent 
T1, and proton density M0 maps; VIF ROI location; and 
tracer-kinetic parameters. The B1

+, T1, and M0 maps are 
common to both methods. MOCCO and SPSENSE esti-
mation approaches differ in VIF estimation and in estimated 
parameter maps for vp and Ktrans. Using both approaches, the 
internal jugular veins, transverse, and sigmoid dural venous 
sinuses were detected.

Table 1: Mean Values, Within-Patient Coefficient of Variation, and Reproducibility Coefficient for Features Derived from Vascular 
Input Functions

MOCCO SPSENSE
Variable Mean COV RC Mean COV RC
Peak concentration 3.08 0.22 1.67 2.09 0.15 0.84
Area under curve 247.49 0.18 124.63 209.58 0.13 83.19
Area under first pass 46.02 0.21 24.0 35.05 0.16 16.57

Note.—Peak concentration is presented in millimoles per liter. Area under curve and area under first pass are presented in millimoles at 1 
second per liter. Reproducibility was determined for model consistency constrained (MOCCO) and sparse sensitivity encoded (SPSENSE) 
vascular input function estimation. All values refer to blood concentration. COV = coefficient of variation, RC = reproducibility coefficient.

Table 2: Mean Volumes of Regions of Interest and 
Respective Number of Voxels for Tissue Types Shown  
in Figure 5

Tissue Type
ROI Volume  
(mm3) No. of Voxels

Nasal mucosa 370.7 6 173.7 198 6 93
Choroid plexus 982.6 6 399.6 524 6 213
Temporalis muscle 2096.0 6 1041.2 1118 6 555
Scalp fat 1145.2 6 313.2 611 6 167
White matter 1321.5 6 268.1 705 6 143

Note.—Data are presented as means 6 standard deviation.  
ROI = region of interest.

Figure 5: Illustration of three-dimensional 
regions of interest used to evaluate reproducibility 
of tracer kinetic parameter estimation. For each 
region of interest, one representative section of 
three sections is shown. All regions of interest with 
exception of nasal mucosa are drawn contralat-
eral to lesion.
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Reproducibility of Patient-specific VIF Estimation
Figure 4 shows representative VIFs for three participants at 
three visits each. The VIFs are measured with MOCCO and 
derived from SPSENSE image time series data. Table 1 lists 
mean, COV, and reproducibility coefficients for peak concen-
tration, areas under the curve, and areas under the first pass. 
VIFs estimated in the MOCCO framework were larger in 

magnitude than SPSENSE-based VIF estimation, with mean 
area under the curve of 247.5 mM for MOCCO versus 209.6 
mM for SPSENSE. The COVs for VIF features were 0.18 for 
MOCCO and 0.13 for SPSENSE, indicating similar reproduc-
ibility of MOCCO and SPSENSE in their ability to measure 
VIFs. As shown in Figure 4 and Table 1, estimation of VIFs based 
on the MOCCO method led to overall larger initial enhance-

Figure 6: Graphs show temporal evolution of median plasma volume fraction (vp) in five regions of interest shown in Figure 5 for different lesions 
and visits. Each row corresponds to different tissue. Left column shows results for model consistency constrained reconstruction, and right column 
shows sparse sensitivity encoded reconstruction. Each line corresponds to different participant. Error bars show interquartile range (25th to 75th per-
centile) for each participant, visit, and tissue region of interest.
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ment peaks of the VIF, with mean peak concentration of 3.1 
mM compared with 2.1 mM for SPSENSE.

ROI Placement
Figure 5 illustrates all five three-dimensional ROIs used to com-
pute histogram statistics and to assess their reproducibility. With 
the exception of the nasal mucosa, all ROIs are drawn contralat-
eral to the lesion. All ROIs spanned at least three sagittal sections. 
To illustrate the number of data points composing the individual 
histograms for each ROI, the mean and standard deviation of 
the ROI sizes for each tissue type are listed in Table 2.

Reproducibility of vp Estimation
Figure 6 shows the temporal evolution of median for vp per re-
gion as estimated by MOCCO and SPSENSE. Table 3 lists the 
mean, COV, and RC for the histogram statistics median and 
95th percentile for vp. As illustrated in Figure 6, both methods 
led to similar temporal behavior for median vp across the three 
visits for the three largest ROIs (ie, temporalis muscle, scalp fat, 
and white matter). Intrapatient variation across time was similar 
to interpatient variation across different participants. MOCCO 
achieved COVs of 87%–117% for median vp in healthy tissue, 
whereas SPSENSE achieved COVs of 53%–95% for median vp. 
RCs for the median vp are below 0.04 and 0.07 for MOCCO 
and SPSENSE, respectively. This maximum was achieved in the 
most strongly vascularized nasal mucosa.

Reproducibility of Ktrans Estimation
Figure 7 shows the temporal evolution of median for Ktrans per 
region as estimated by MOCCO and SPSENSE. Table 4 lists the 
mean, COV, and RC for the histogram statistics of median and 
95th percentile for Ktrans. In nasal mucosa, temporalis muscle, 
and scalp fat, the median Ktrans values estimated by the SPSENSE 
method (0.46 min21, 0.05 min21, and 0.05 min21, respectively) 

were on average higher than those estimated by MOCCO 
(0.41 min21, 0.04 min21, and 0.38 min21, respectively), which 
is in alignment with lower peak VIF amplitude of SPSENSE. 
MOCCO achieved COVs of 31%–91% for median Ktrans in 
healthy tissue. SPSENSE achieved COVs of 29%–57% for me-
dian Ktrans. For the two largest tissue ROIs with nonnegligible 
Ktrans (ie, temporalis muscle and scalp fat), both methods esti-
mated median Ktrans with COVs of 31%–50%, and the higher 
valued 95th percentile with COVs of 22%–32%. For thinner 
structures, such as the choroid plexus, or measurements of high 
permeability, such as the 95th percentile of Ktrans in the nasal mu-
cosa, the COV was as high as 60%–91%. Similarly, RC estimates 
increased with increased parameter magnitude or tenuity of the 
underlying tissue structure. With use of the SPSENSE method, 
the protocol estimated median Ktrans in healthy tissues with a 
maximum RC of 0.06 min21 in large, low-enhancing tissue re-
gions, such as muscle and fat. The maximum reproducibility co-
efficient for the median Ktrans was, however, as high as 0.48 min21 
in smaller or more strongly enhancing tissue regions, such as the 
choroid plexus or nasal mucosa.

Results of reproducibility for estimation of the extravascular-
extracellular volume fraction are shown in Figure E1 and Table 
E2 (both online).

Discussion
Advances in sub-Nyquist–sampled dynamic contrast-enhanced 
(DCE) MRI enables monitoring of brain tumors with milli-
meter spatial resolution and whole-brain coverage at 5-second 
temporal resolution. These new features require evaluation re-
garding achievable test-retest reproducibility in DCE MRI mea-
surements. We estimate that millimeter-resolution whole-brain 
DCE MRI can be used to estimate the median volume transfer 
constant in healthy tissues with maximum reproducibility coeffi-
cient (RC) of 0.06 min21 in large, low-enhancing tissue regions, 

Table 3: Reproducibility of Histogram Statistics for Plasma Volume Fraction

MOCCO SPSENSE

Variable Mean COV RC Mean COV RC
vp median*
 Nasal mucosa 0.02 0.87 0.04 0.04 0.92 0.07
 Choroid plexus 0.01 1.17 0.02 0.01 0.53 0.01
 Temporalis muscle 0.01 0.94 0.01 0.01 0.95 0.01
 Scalp fat 0.01 1.00 0.02 0.01 0.65 0.02
 White matter 0.00 … 0.00 0.00 … 0.00
vp 95th percentile†
 Nasal mucosa 0.20 0.77 0.60 0.20 0.57 0.50
 Choroid plexus 0.09 0.35 0.10 0.05 0.33 0.05
 Temporalis muscle 0.05 0.21 0.04 0.03 0.37 0.03
 Scalp fat 0.07 0.34 0.11 0.05 0.27 0.05
 White matter 0.01 0.88 0.01 0.01 0.39 0.01

Note.—Reproducibility was determined for model consistency constrained (MOCCO) and sparse sensitivity encoded (SPSENSE) vascular 
input function estimation. All values are unitless. COV = coefficient of variation, RC = reproducibility coefficient, vp = plasma volume 
fraction.
* Mean, COV, and RC for the median of vp histograms in the five different regions of interest shown in Figure 5.
† Mean, COV, and RC for the 95th percentile of vp histograms.
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such as muscle and fat, and maximum RC less than 0.48 min21 
in smaller or more strongly enhancing tissue regions, such as the 
choroid plexus or nasal mucosa.

We estimate that millimeter-resolution whole-brain DCE 
MRI can achieve a maximum COV in healthy tissues less 
than 57% and 91% for median Ktrans with use of SPSENSE 
and MOCCO, respectively. In larger, potentially more ho-
mogeneous structures (eg, the temporalis muscle or scalp fat), 

the COV for median Ktrans is estimated to be 30%–50% for 
both methods. As a reference, the current Radiological Society 
of North America Quantitative Imaging Biomarkers Alliance 
DCE profile specifies an achievable COV of 20% for mean 
Ktrans in a tumor ROI of at least 2 cm in diameter, which re-
quires a longitudinal change of 40% in Ktrans for statistical sig-
nificance (13). If confirmed in larger cohorts, then the COVs 
found in this study would imply that even the best method may 

Figure 7: Graphs show evolution of median volume transfer constant (Ktrans) in five regions of interest shown in Figure 5 for different lesions and 
visits. Each row corresponds to different tissue. Left column shows results for model consistency constrained reconstruction, and right column shows 
results for sparse sensitivity encoded reconstruction. Each line corresponds to different participant. Error bars show interquartile range (25th to 75th 
percentile) for each participant, visit, and tissue region of interest.
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not yield parameters sensitive enough to monitor subtle longi-
tudinal changes in brain tumors. Differences in estimated COV 
may be attributed to differences in the use of tracer-kinetic 
models (which is specified as the standard Tofts model in the 
profile), estimation of COV in tissues with possibly different 
permeability strengths (ie, tumor tissue vs healthy tissues) or the 
time gaps between repeated measurements.

High-spatial-resolution whole-brain DCE MRI guarantees 
the existence of large-vessel structures inside the field of view. 
Minimal inflow enhancement and partial volume corruption in 
the vessel region greatly facilitate automation of VIF estimation. 
Automation has been a major bottleneck in the standardization 
of DCE MRI, and the proposed approach helps facilitate auto-
mation. We expect that such automation can expedite transla-
tion, similar to how fully automated software packages for stroke 
MRI analysis provide a powerful way to standardize postprocess-
ing and pave the road to clinical deployment (32).

Bias and linearity of DCE MRI cannot be assessed in vivo 
because of lack of ground-truth values. Therefore, DCE MRI is 
predominantly suited for longitudinal monitoring, where bias 
cancels but assessment requires a high degree of known pre-
cision (15). We analyzed and characterized reproducibility of 
the automated DCE MRI method in several different tissues 
with different enhancement characteristics. Knowledge of the 
RC of a given method is a crucial first step in determining the 
detectable effect size in longitudinal studies, such as response 
to therapy assessment (15).

Our study had several limitations. First, there was a lack of 
tracer-kinetic parameter ground truth for validation. This limita-
tion is common to most evaluations of DCE MRI pipelines. Esti-
mation of the VIF is a crucial intermediate step and could be cross 
validated with CT measurements in phantoms (33). For breast 
DCE MRI, a partial alternative would be to deploy the Stewart-
Hamilton theorem to validate the area under the initial peak 
through independent cardiac output measurements (28). Second, 

this study used reference regions, not brain tumor tissue. Test-
retest studies in sick patients (eg, those with high-grade glioma) 
and involving procedures with contrast agents are notoriously dif-
ficult to conduct because they require patients to appear for ad-
ditional non–standard-of-care MRI examinations. They are rarely 
performed despite being an integral part on the path to clinical de-
ployment. Typically, clinical studies are cascaded from pilot studies 
to randomized clinical trials. For this reason, we pursued a pseudo 
test-retest study design by selecting tissues that were deemed to be 
stable during regular treatment follow-up examinations. This relies 
on the assumption of no or negligible change in the chosen tissues 
between the time points, which erroneously increases estimated 
measures of reproducibility if violated. However, because of lack 
of ground truth and standard reference methods, this assumption 
may be hard to verify rigorously through nonradiographic mea-
sures. As a result of the severity and aggressiveness of the disease, 
these tissue types do not include the actual tumor target tissue, 
where possibility of tumor growth and change could not be elimi-
nated. Future research is needed to show whether few represen-
tative (healthy) tissue types at various enhancement strength can 
accurately represent and capture the potential diverse characteris-
tics of reproducibility in lesions as heterogeneous as brain tumors. 
Finally, our study relied on several simplifying model assumptions. 
These assumptions include a constant relaxivity and hematocrit 
value. Hematocrit is known to change throughout the course of 
treatment (28). We did not model water exchange (34), diffusion 
of contrast agent (35), or damage to tissue after surgery, which can 
lead to additional leakage.

We demonstrate a fully automated dynamic contrast- 
enhanced (DCE) MRI reconstruction and modeling pipeline  
offering high spatial and temporal resolution with full brain  
coverage. This includes fast T1 estimation before administration 
of contrast agents, automated vascular input function extraction, 
and model-based tracer kinetic parameter mapping. We further 
demonstrate pseudo test-retest as a possible alternative to assess 

Table 4: Reproducibility of Histogram Statistics for Volume Transfer Constant

MOCCO SPSENSE

Variable Mean (min21) COV RC (min21) Mean (min21) COV RC (min21)
Ktrans median*
 Nasal mucosa 0.41 0.42 1.02 0.46 0.29 0.48
 Choroid plexus 0.02 0.91 0.06 0.08 0.57 0.10
 Temporalis muscle 0.04 0.31 0.04 0.05 0.33 0.06
 Scalp fat 0.04 0.46 0.05 0.05 0.49 0.06
 White matter 0.00 … 0.00 0.00 … 0.00
Ktrans 95th percentile†

 Nasal mucosa 1.74 0.66 8.18 1.67 0.61 5.19
 Choroid plexus 0.34 0.38 0.36 0.55 0.23 0.36
 Temporalis muscle 0.16 0.27 0.13 0.13 0.32 0.14
 Scalp fat 0.19 0.26 0.22 0.16 0.22 0.12
 White matter 0.00 … 0.01 0.00 … 0.00

Note.—Reproducibility was determined for model consistency constrained (MOCCO) and sparse sensitivity encoded (SPSENSE) vascular 
input function estimation. COV = coefficient of variation, Ktrans = volume transfer constant, RC = reproducibility coefficient.
* Mean, COV, and RC for the median of Ktrans histograms in the five different regions of interest shown in Figure 5.
† Mean, COV, and RC for the 95th percentile of Ktrans histograms.
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reproducibility in sick patients. On the basis of the large param-
eter range for volume transfer constant covered by the various 
tissue types in this study, we believe that reproducibility in these 
tissues can give guidance to future study designs involving high-
spatiotemporal-resolution DCE MRI.
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