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Abstract 

Purpose: To develop a numerical approximation to the general kinetic model (GKM) for ASL 

quantification that will enable greater flexibility in ASL acquisition methods. 

 

Theory: The Bloch-McConnell equations are extended to include the effects of single compartment 

inflow and outflow on both the transverse and longitudinal magnetization. These can be solved using an 

extension of Jaynes’ matrix formalism with piecewise constant approximation of incoming labeled 

arterial flow and a clearance operator for outgoing venous flow. 

 

Methods:  The proposed numerical approximation is compared with GKM using simulations of pulsed 

labeling (PASL) and pseudo-continuous labeling (PCASL) and a broad range of transit time and bolus 

duration for tissue blood flow of 0.6 mL/g/min.  Accuracy of the approximation is studied as a function 

of the timestep using Monte-Carlo simulations. Three additional scenarios are demonstrated: 1) steady-

pulsed ASL (spASL); 2) MR fingerprinting ASL (MRF-ASL); 3) balanced steady-state free precession (bSSFP) 

and spoiled gradient-echo (SPGR) sequences. 

 

Results: The proposed approximation was found to be arbitrarily accurate for PASL and PCASL labeling.  

PASL(PCASL) approximation error compared to GKM was <0.002%(<0.002%) and <0.05%(<0.05%) for 

timesteps of 3 and 35 msec, respectively. The proposed approximation matched well with customized 

signal expressions of spASL and MRF-ASL. The simulations of simultaneous modeling of flow, 𝑇2, and MT 

showed an increase in steady-state bSSFP and SPGR signals. 

 

Conclusion: We demonstrate a numerical approximation of the BMF equations that enables arbitrarily 

accurate modeling of PASL and PCASL signals comparable to GKM.  This enables increased flexibility in 

the experiment design for quantitative ASL. 

 

Keywords:  Arterial Spin Labeling, Perfusion, Blood Flow, Quantification, Steady-Pulsed ASL, 

Fingerprinting ASL  



1. INTRODUCTION 

Tissue perfusion is an important indicator of organ health that can be measured by MRI with or 

without contrast agents.  ASL is the most widely used non-contrast approach, and has been extensively 

applied to brain (1), kidney (2), and more recently heart (3).  ASL involves labeling upstream blood using 

radiofrequency (RF) pulses and then imaging tissue as it is perfused, within the relatively short window 

of T1 relaxation.  

ASL quantification was first demonstrated using Detre’s “apparent-T1” approach (4,5) that 

combines the longitudinal component of the Bloch equations with single-compartment kinetics and 

derives an analytical expression for the longitudinal magnetization in the presence of flow.  Buxton’s 

general kinetic model (GKM) (6) reformulates Detre’s “apparent-T1” approach as a convolution problem 

without requiring the Bloch equations, under a general setting where the transit delay and bolus 

duration are taken into account. GKM is widely used because it is simple, analytic, and provides 

excellent intuition into signal formation. However, it is nontrivial for GKM to model the effects of flow 

with magnetization transfer (MT) (7–9), 𝑇2 effects, off-resonance, and irregular timing of labeling.  

Many previous approaches in ASL have generalized the Bloch equations to include transit delay 

and bolus duration (10), MT effects (11–15), water exchange (16–18), and dispersion (19–21). However, 

all approaches tried to generalize only the longitudinal component of the Bloch equations and thus 

simultaneous modeling of flow with 𝑇2 effects and off-resonance has not been demonstrated. 

Unlike the approaches in ASL, the full Bloch equations (containing both transverse and 

longitudinal magnetization) have been extended with additional terms to model the physical 

phenomenon of interest. Examples include the Bloch-Torrey equations for diffusion (22) and velocity 

(23), and the Bloch-McConnell equations for magnetization transfer (24) and chemical exchange 

saturation transfer (25,26). These modified Bloch equations are efficiently solved with a variant of 

propagator approaches (i.e., matrix formalism) (27,28). Inspired by its great flexibility to model various 

effects, this work seeks to develop a framework based on matrix formalism that can simultaneously 

model the effects of flow with the aforementioned effects. We extend the Bloch equations with MT 

effects (a binary spin-bath model) (29–31) by adding single compartment inflow and outflow terms. We 

denote these “Bloch-McConnell-Flow” (BMF) equations.  

In order to solve the BMF equations, we derive an extension of Jaynes’ matrix formalism (32) 

with two approximations. This approach retains the advantages of Jaynes’ matrix formalism, such as the 

ability to include off-resonance, the slice excitation profile, and B1 transmit (B1+) inhomogeneity. This 

numerical approach is particularly attractive for ASL scenarios that have been cumbersome for existing 



GKM-based approaches, such as irregular timing of labeling (33,34), transient-state signal evolutions 

such as balanced steady-state free precession (bSSFP) steady-pulsed ASL (spASL) (35) and MR 

fingerprinting ASL (MRF-ASL) (36,37). 

We first present the proposed BMF equations, and then the extended matrix formalism with 

numerical approximation. We demonstrate that accuracy depends on the timestep used for updating 

magnetization states. The numeric approximation is validated against GKM for the case of single-

compartment kinetics with pulsed labeling and pseudo-continuous labeling. Monte-Carlo simulations 

are then used to investigate the impact of the timestep on the accuracy of a numeric approximation 

compared to GKM. The flexibility of this approach is demonstrated using two non-standard ASL pulse 

sequences. For each sequence our approach was validated against the existing quantification models. 

 

2. THEORY 

2.1 Bloch-Flow Equations 

For simplicity, we assume single-compartment kinetics, instantaneous mixing between arterial 

blood water and tissue, and only the longitudinal magnetization of inflowing arterial blood is modified. 

For tissue magnetization 𝐌(𝑡) = [𝑀𝑥(𝑡), 𝑀𝑦(𝑡), 𝑀𝑧(𝑡)]𝑇 under perfusion, the proposed Bloch-Flow 

equations (in the rotating frame) model the effects of incoming arterial flow (constant unlabeled and 

time-varying labeled longitudinal magnetization) and outgoing venous flow on the transverse and 

longitudinal magnetization 

 

 

𝑑𝐌(𝑡)

𝑑𝑡
= 𝐌(𝑡) × 𝛾𝐁(𝑡) −

𝑀𝑥(𝑡)𝑖
→

+ 𝑀𝑦(𝑡)𝑗
→

𝑇2
+

(𝑀0 − 𝑀𝑧(𝑡))𝑘
→

𝑇1

+  
𝐹

𝜆
𝑀0 + 𝑠(𝑡) 𝑘

→

−
𝐹

𝜆
(𝑀𝑥(𝑡)𝑖

→
+ 𝑀𝑦(𝑡)𝑗

→
+ 𝑀𝑧(𝑡)𝑘

→

),

 [1] 

 

where 𝑀0 is the equilibrium magnetization/g of tissue, 𝐹 is the perfusion in mL of blood/g of tissue/min, 

𝜆 is the tissue-blood partition coefficient in mL of blood/g of tissue, and 𝑠(𝑡) is referred to as the ASL 

bolus signal. Note that the model implicitly assumes  𝑀0
blood =  𝑀0

tissue /𝜆. Equation 1 can be 

expressed in matrix-vector notation, as follows: 

 



 
 
 
 
 
 
𝑑𝑀𝑥

𝑑𝑡
𝑑𝑀𝑦

𝑑𝑡
𝑑𝑀𝑧

𝑑𝑡  
 
 
 
 
 

=

 
 
 
 
 
 
 − 

1

𝑇2
+

𝐹

𝜆
 𝛾𝐆(𝑡) ⋅ 𝐫 + 2𝜋Δ𝑓 −𝛾𝐵1,𝑦(𝑡)

−(𝛾𝐆(𝑡) ⋅ 𝐫 + 2𝜋Δ𝑓) − 
1

𝑇2
+

𝐹

𝜆
 𝛾𝐵1,𝑥(𝑡)

𝛾𝐵1,𝑦(𝑡) −𝛾𝐵1,𝑥(𝑡) −  
1

𝑇1
+

𝐹

𝜆
 
 
 
 
 
 
 
 

 

𝑀𝑥

𝑀𝑦

𝑀𝑧

 +  

0
0

 
1

𝑇1
+

𝐹

𝜆
 𝑀0 + 𝑠(𝑡)

 , [2] 

 

where 𝐆(𝑡) ⋅ 𝐫 is the dot product of a gradient vector 𝐆 𝑡  in G/cm and a spatial position vector 𝐫 in cm, 

Δ𝑓 is off-resonance in Hz, 𝐵1,𝑥(𝑡) and 𝐵1,𝑦(𝑡) are the x and y components of an RF pulse in G. Note that 

the ASL bolus signal is the magnetization flow rate per g of tissue, expressed in units of magnetization/g 

of tissue/sec. The Bloch-Flow equations possess three additional features compared with the original 

Bloch equations: 1) the clearance of transverse and longitudinal magnetization by venous flow is present 

in the main diagonal and forms apparent 𝑇2 and 𝑇1 relaxation times for transverse and longitudinal 

magnetization, respectively, 2) unlabeled arterial blood is constantly added to the longitudinal 

magnetization creating a blood flow dependent equilibrium magnetization, and 3) time-varying labeled 

arterial blood decreases the longitudinal magnetization and creates a time-dependent equilibrium 

magnetization (Note 𝑠(𝑡) has the negative sign).  

The theory is applicable for different labeling patterns and methods. We assume a perfectly 

rectangular bolus of arterial blood for PASL. The ASL bolus signal is defined differently for PASL and 

continuous ASL (CASL)/pseudo-continuous ASL (PCASL): 

 

PASL: 𝑠 𝑡 =  −
𝐹

𝜆
𝑀0𝛼0𝑒

−(𝑡−𝑡ℓ,𝑖)/𝑇1𝑏  𝑢 𝑡 − 𝑡ℓ,𝑖 − 𝑇𝐷,𝑖 − 𝑢 𝑡 − 𝑡ℓ,𝑖 − 𝑇𝐷,𝑖 − 𝑇𝑊,𝑖  

𝑀

𝑖=1

, [3a] 

CASL/ 

(PCASL): 
𝑠 𝑡 = −

𝐹

𝜆
𝑀0𝛼0𝑒

−𝑇𝐷 /𝑇1𝑏  𝑢 𝑡 − 𝑇𝐷 − 𝑢 𝑡 − 𝑇𝐷 − 𝑇𝑊  , [3b] 

 

where 𝑀 is the number of labeling pulses, 𝑡ℓ,𝑖  is the application of the 𝑖𝑡ℎ  labeling, 𝛼0 is the labeling 

efficiency (1 for saturation, 2 for inversion, 0 for control), 𝑇1𝑏  is the longitudinal relaxation time of 

arterial blood, u(𝑡) is the Heaviside step function, 𝑇𝐷  is the arterial transit time (ATT) in sec, and 𝑇𝑊  is 

the bolus duration in sec. In general, the ASL bolus signal 𝑠(𝑡) can be obtained from either an analytical 

expression or a numerical computation (e.g., dispersion (19,21)) as long as it can be evaluated at a 

particular time 𝑡. 

 



2.2 Bloch-McConnell-Flow equations 

The Bloch-Flow equations can be further extended to include MT effects. The binary spin-bath 

MT model (30,31) divides tissue magnetization between a liquid pool (𝑓) of free water and a semisolid 

pool (𝑠) of protons bound to macromolecules and neglects net exchange of transverse magnetization 

due to a very short transverse relaxation time of the semisolid pool 𝑇2
𝑠 ≈ 10μs (38). Following previous 

approaches (11,13,39), we assume that blood water spins exchange only with the liquid pool of tissue 

magnetization. For free water and semisolid pool protons 𝐌(𝑡) = [𝑀𝑥
𝑓 𝑡 , 𝑀𝑦

𝑓 𝑡 , 𝑀𝑧
𝑓 𝑡 , 𝑀𝑧

𝑠(𝑡)]𝑇under 

perfusion, the BMF equations are then written as 

  

 
𝑑𝐌(𝑡)

𝑑𝑡
=  𝛀 𝑡 + 𝚲 + 𝚪 + 𝚵 𝐌 𝑡 + 𝐃 𝑡 , [4] 

 

where 

 

 

𝛀 𝑡 =

 
 
 
 
 

0 𝛾𝐆(𝑡) ⋅ 𝐫 + 2𝜋Δ𝑓 −𝛾𝐵1,𝑦 𝑡 0

−(𝛾𝐆(𝑡) ⋅ 𝐫 + 2𝜋Δ𝑓) 0 𝛾𝐵1,𝑥 𝑡 0

𝛾𝐵1,𝑦 𝑡 −𝛾𝐵1,𝑥 𝑡 0 0

0 0 0 −𝑊 Δ 𝑡 , 𝑡  
 
 
 
 

,  

𝚲 =  

0 0 0 0
0 0 0 0
0 0 −𝑘𝑓 𝑘𝑠

0 0 𝑘𝑓 −𝑘𝑠

 , 𝚪 =

 
 
 
 
 
 −

𝐹

𝜆
0 0 0

0 −
𝐹

𝜆
0 0

0 0 −
𝐹

𝜆
0

0 0 0 0 
 
 
 
 
 

, 𝚵 =

 
 
 
 
 
 
 
 −

1

𝑇2
𝑓 0 0 0

0 −
1

𝑇2
𝑓 0 0

0 0 −
1

𝑇1
𝑓 0

0 0 0 −
1

𝑇1
𝑠 
 
 
 
 
 
 
 

,  

and 𝐃(𝑡) =

 
 
 
 
 
 

0
0

 
1

𝑇1
𝑓 +

𝐹

𝜆
 𝑀0

𝑓
+ 𝑠(𝑡)

1

𝑇1
𝑠 𝑀0

𝑠
 
 
 
 
 
 

. 

[5] 

 

The matrix 𝛀 𝑡  describes evolution due to gradients, off-resonance (no separate free precession 

operator), and RF pulses, 𝚲 describes evolution due to exchange, 𝚪 describes evolution due to the 

clearance of transverse and longitudinal magnetization by venous flow, 𝚵 describes evolution due to 

relaxation, and 𝐃(𝑡)  is the time-dependent equilibrium magnetization. 𝑀0
𝑓

 and 𝑀0
𝑠  denote the 

equilibrium magnetizations for the liquid and semisolid pools, respectively, 𝑘𝑓  and 𝑘𝑠 refer to forward 



(𝑓 → 𝑠) and reverse (𝑠 → 𝑓) exchange rates between two compartments in sec-1 and the fundamental 

rate constant 𝑘 relates them by 𝑘 = 𝑘𝑓/𝑀0
𝑠 = 𝑘𝑠/𝑀0

𝑓
. The semisolid pool fraction 𝑓 is defined as 

𝑓 = 𝑀0
𝑠/𝑀0

𝑓
 and relates forward and reverse exchange rates by 𝑘𝑠  = 𝑘𝑓/𝑓 . The instantaneous 

saturation rate 𝑊(Δ 𝑡 , 𝑡) describes the effect of pulsed irradiation (frequency offset Δoffset ) on the 

longitudinal magnetization of the semisolid protons (8) and is defined as 

𝑊(Δ 𝑡 , 𝑡) = 𝜋𝛾2‖𝐁1(𝑡)‖2
2𝐺(Δ 𝑡 , 𝑇2

𝑠) in rad/sec, where 𝐺(Δ 𝑡 , 𝑇2
𝑠) is the absorption lineshape of the 

semisolid pool in sec and Δ 𝑡 ≜ Δoffset − (𝛾𝐆(𝑡) ⋅ 𝐫 + 2𝜋Δ𝑓)  is the adjusted time-dependent 

frequency offset to account for local field shifts by gradient fields and off-resonance on the absorption 

response. 

 

2.3 Extended Matrix Formalism 

The Bloch equations can be efficiently solved using Jaynes’ matrix formalism (32). Here we 

derive evolution operators for the BMF equations. We assume that the duration of a signal evolution is 

divided into N timesteps and each timestep is associated with an RF pulse (x and y components) (𝐁𝑖 ), 

gradient (𝐆𝑖), start time (𝑡𝑖), measurement time (𝜉𝑖 ), and duration (𝜏𝑖) of the timestep. Assuming a 

piecewise constant RF pulse and 𝐆(𝑡) over each timestep, the magnetization evolves due to gradients 

and RF pulses as 𝐌(𝑡𝑖 + 𝜏𝑖) = 𝐑𝑖𝐌(𝑡𝑖)  where 𝐑𝑖 = exp(𝛀(𝑡𝑖)𝜏𝑖) . This operator 𝐑𝑖  consists of a 

rotation matrix 𝐑(𝐮𝑖 , 𝜃𝑖) about the axis 𝐮𝑖 = [𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧]T  of an angle 𝜃𝑖  for the free water and a 

saturation term for the semisolid pool: 

 

 𝐑𝑖 =  
𝐑(𝐮𝑖 , 𝜃𝑖) 𝟎

𝟎 exp(−𝑊 Δ 𝑡𝑖 , 𝑡𝑖 𝜏𝑖)
 , [6] 

 

where 

 

𝐑(𝐮, 𝜃) =

 

cos 𝜃 + 𝑢𝑥
2(1 − cos 𝜃) 𝑢𝑥𝑢𝑦(1 − cos 𝜃) − 𝑢𝑧 sin 𝜃 𝑢𝑥𝑢𝑧(1 − cos 𝜃) + 𝑢𝑦 sin 𝜃

𝑢𝑦𝑢𝑥(1 − cos 𝜃) + 𝑢𝑧 sin 𝜃 cos 𝜃 + 𝑢𝑦
2 (1 − cos 𝜃) 𝑢𝑦𝑢𝑧(1 − cos 𝜃) − 𝑢𝑥 sin 𝜃

𝑢𝑧𝑢𝑥(1 − cos 𝜃) − 𝑢𝑦 sin 𝜃 𝑢𝑧𝑢𝑦(1 − cos 𝜃) + 𝑢𝑥 sin 𝜃 cos 𝜃 + 𝑢𝑧
2(1 − cos 𝜃)

 , 
[7] 

 

𝜃𝑖 = 𝛾𝜏𝑖‖𝐁(𝑡𝑖)‖2 , 𝐁(𝑡𝑖) = [𝐵1,𝑥(𝑡𝑖), 𝐵1,𝑦(𝑡𝑖), 𝐆(𝑡𝑖) ⋅ 𝐫 + 2𝜋Δ𝑓/𝛾]𝑇 , and 𝐮𝑖 = 𝐁(𝑡𝑖)/‖𝐁(𝑡𝑖)‖2 . Note 

that we use a left-handed convention for the rotation in the right-handed coordinate system. The 



general solution to the temporal evolution of the magnetization due to exchange, clearance, and 

relaxation is 

 

 𝐌 𝑡𝑖 + 𝜏𝑖 = 𝑒 𝚲+𝚪+𝚵 𝜏𝑖𝐌 𝑡𝑖 +  𝑒 𝚲+𝚪+𝚵  𝑡𝑖+𝜏𝑖−𝜏 𝐃 𝜏 𝑑𝜏
𝑡𝑖+𝜏𝑖

𝑡𝑖

. [8] 

 

Using a piecewise constant approximation of 𝑠(𝑡) over duration 𝜏𝑖 , i.e., 𝐃 𝜏 = 𝐃 𝑡𝑖  for 𝑡𝑖 ≤ 𝜏 ≤ 𝑡𝑖 +

𝜏𝑖  and this formula  𝑒𝐀𝜏𝑑𝜏
𝑡

0
= (𝑒𝐀𝑡 − 𝐈)𝐀−1, we simplify the integral equation and obtain a closed-

form expression as 

 

 𝐌 𝑡𝑖 + 𝜏𝑖 ≅ 𝑒 𝚲+𝚪+𝚵 𝜏𝑖𝐌 𝑡𝑖 +  𝑒 𝚲+𝚪+𝚵 𝜏𝑖 − 𝐈  𝚲 + 𝚪 + 𝚵 −1𝐃 𝑡𝑖 . [9] 

 

With the second approximation that relaxation and exchange can be decoupled (40,41), we get 

exp((𝚲 + 𝚪 + 𝚵)𝜏𝑖) ≅ exp(𝚲𝜏𝑖) ⋅ exp(𝚪𝜏𝑖) ⋅ exp(𝚵𝜏𝑖) = 𝐀(𝜏𝑖)𝐂(𝜏𝑖)𝐄(𝜏𝑖)  where exchange 𝐀(𝜏𝑖) , 

clearance 𝐂(𝜏𝑖), and relaxation 𝐄(𝜏𝑖) operators are defined as 

 

𝐀(𝜏𝑖) =
1

𝑓+1

 
 
 
 
𝑓 + 1 0 0 0

0 𝑓 + 1 0 0

0 0 1 + 𝑓exp(−(𝑓 + 1)𝑘𝑠𝜏𝑖) 1 − exp(−(𝑓 + 1)𝑘𝑠𝜏𝑖)

0 0 𝑓 − 𝑓exp(−(𝑓 + 1)𝑘𝑠𝜏𝑖) 𝑓 + exp(−(𝑓 + 1)𝑘𝑠𝜏𝑖) 
 
 
 
, 

𝐂 𝜏𝑖 =  

𝑒−𝜏𝑖𝐹/𝜆 0 0 0
0 𝑒−𝜏𝑖𝐹/𝜆 0 0
0 0 𝑒−𝜏𝑖𝐹/𝜆 0
0 0 0 1

 , and 𝐄(𝜏𝑖) =

 
 
 
 
 𝑒

−𝜏𝑖/𝑇2
𝑓

0 0 0

0 𝑒−𝜏𝑖/𝑇2
𝑓

0 0

0 0 𝑒−𝜏𝑖/𝑇1
𝑓

0

0 0 0 𝑒−𝜏𝑖/𝑇1
𝑠 
 
 
 
 

. 

[10] 

 

Therefore, the temporal evolution in the absence of RF for the BMF equations can be approximated as 

 

 

𝐌 𝑡𝑖 + 𝜏𝑖 = 𝐀 𝜏𝑖 𝐂 𝜏𝑖 𝐄 𝜏𝑖 𝐌 𝑡𝑖 +  𝐈 − 𝐀 𝜏𝑖 𝐂 𝜏𝑖 𝐄 𝜏𝑖  ∗ ⋯ 

⋯

 
 
 
 
 
 
 

0
0

 
1 + 𝑇1

𝑠𝑘𝑠

1 + 𝑇1𝑎𝑝𝑝 𝑘𝑓 + 𝑇1
𝑠𝑘𝑠  𝑀0

𝑓
+ 𝑠(𝑡𝑖)𝑇1𝑎𝑝𝑝  +  

𝑇1𝑎𝑝𝑝 𝑘𝑠

1 + 𝑇1𝑎𝑝𝑝 𝑘𝑓 + 𝑇1
𝑠𝑘𝑠 𝑀0

𝑠

 
𝑇1

𝑠𝑘𝑓

1 + 𝑇1𝑎𝑝𝑝 𝑘𝑓 + 𝑇1
𝑠𝑘𝑠  𝑀0

𝑓
+ 𝑠(𝑡𝑖)𝑇1𝑎𝑝𝑝  +  

1 + 𝑇1𝑎𝑝𝑝 𝑘𝑓

1 + 𝑇1𝑎𝑝𝑝 𝑘𝑓 + 𝑇1
𝑠𝑘𝑠 𝑀0

𝑠

 
 
 
 
 
 
 

, 
[11] 

 



where 𝑇1𝑎𝑝𝑝 = 1/𝑇1
𝑓

+ 𝐹/𝜆  is the apparent 𝑇1  relaxation time for the (liquid pool) longitudinal 

magnetization. Note that with the first approximation, the amount of labeled blood over a timestep is 

estimated by multiplying the ASL bolus signal 𝑠(𝑡) at the start time 𝑡𝑖  of the 𝑖𝑡ℎ  timestep with duration 

𝜏𝑖  (See Figure 1). This approximation is valid provided that the T1 decay of labeled blood is slow (or 

negligible) over the duration of each timestep. For the BMF equations without MT effects (herein 

denoted BF equations) we do not need the second approximation since 𝚪𝚵 = 𝚵𝚪. The temporal 

evolution in the absence of RF for the BF equations can be obtained by setting 𝑀0
𝑠 = 0, 𝑘𝑓 = 0, 𝑘𝑠 =

0, 𝐀 𝜏𝑖 = 𝐈 in Equation 10. Note also that without considering MT effects, for each timestep, liquid pool 

protons (tissue water) relax with a new time-dependent pseudo equilibrium magnetization: 𝑀0
𝑓

+

𝑠(𝑡𝑖)𝑇1𝑎𝑝𝑝 . 

Using the extended matrix formalism, the magnetizations in the 𝑖𝑡ℎ  timestep of Figure 1 can be 

expressed as: 

 

 Initialization: 𝐌𝑎  𝑖 = 𝐌𝑑  𝑖 − 1  [12] 

 

 RF excitation: 𝐌𝑏  𝑖 = 𝐑𝑖𝐌𝑎  𝑖  [13] 

 

 𝐌𝑐 𝑖 = 𝐀 𝜉𝑖 𝐂 𝜉𝑖 𝐄 𝜉𝑖 𝐌𝑏  𝑖 +  𝐈 − 𝐀 𝜉𝑖 𝐂 𝜉𝑖 𝐄 𝜉𝑖  [0,0, …  𝑀0
𝑓

+ 𝑠 𝑡𝑖 𝑇1𝑎𝑝𝑝  … ]𝑇  [14] 

 

 
𝐌𝑑  𝑖 = 𝐀 𝜏𝑖 − 𝜉𝑖 𝐂 𝜏𝑖 − 𝜉𝑖 𝐄 𝜏𝑖 − 𝜉𝑖 𝐌𝑐 𝑖  

+(𝐈 − 𝐀 𝜏𝑖 − 𝜉𝑖 𝐂(𝜏𝑖 − 𝜉𝑖)𝐄(𝜏𝑖 − 𝜉𝑖))[0,0,…  𝑀0
𝑓

+ 𝑠 𝑡𝑖 𝑇1𝑎𝑝𝑝  … ]𝑇  
[15] 

 

The magnetization vector 𝐌𝑐 𝑖  at 𝜉𝑖  for each timestep is collected and this computation is performed 

from the first to the last timestep. 

 

3. METHODS 

All simulations were performed using MATLAB R2018a (The MathWorks, Natick, MA, USA) on a 

PC equipped with one 1.60 GHz 4-core Intel i5-8250U CPU and 20 GB of random-access memory. 

 

3.1 Numerical Validation against single delay PASL and PCASL 



The proposed numeric approximation was compared with GKM for single-compartment kinetics 

with pulsed labeling and pseudo-continuous labeling. For both labeling methods, recommended labeling 

parameters were obtained from the recent consensus paper by Alsop et al. (1). PASL/PCASL labeling 

parameters were 𝑇𝐷 = 700 msec, 𝑇𝑊  = 800/1800 msec, and 𝛼 (labeling efficiency) = 0.98/0.85. When MT 

effects are not considered, superscripts are omitted. Simulation parameters for a typical gray matter 

voxel were 𝐹 = 0.6 mL/g/min, 𝑇1/𝑇1𝑏  = 1200/1650 msec, 𝑀0 = 1, 𝜆 = 0.9, 𝛼0 = 2𝛼 (inversion). For both 

labeling methods, the labeling pulse was applied at 0 sec. The duration of signal evolution was 4 sec. The 

number 𝑁 of timesteps was calculated as 𝑁 =  𝑇 𝜏  , where 𝑇 is the total duration and 𝜏 is the timestep 

used for numeric approximation. ASL signals were calculated with two timesteps 𝜏 = 3 and 𝜏 = 35 msec. 

The shorter timestep, 3 msec, was chosen based on its use as the imaging TR in cardiac ASL (42).  The 

longer timestep, 35 msec, was chosen based on its use as the imaging TR in MRF-ASL (37). For the 

numeric approximation, control and label signals without and with labeling were first calculated at 

measurement times {𝜉𝑖}𝑖=1
𝑁 = {𝜏𝑖}𝑖=1

𝑁 = 𝜏, and then a difference between these signals was set to the 

PASL/PCASL signal. For GKM, PASL and PCASL signals were calculated by evaluating Equations 3 and 5 of 

Buxton et al. (6), respectively. 

 

3.2 Numerical Accuracy 

We investigated the effect of the timestep (𝜏) on the accuracy of the approximation.  We tested 

500 timesteps linearly spaced from 0 to 50 msec in increments of 0.1 msec. ASL signals with inversion 

labeling were generated with GKM (denoted ∆MGKM (t) ) and the numeric approximation (denoted 

∆Mnumeric (t))  while sweeping parameters for transit delay 𝑇𝐷  and bolus duration 𝑇𝑊. The range of 

each parameter and fixed parameters were adapted from the recent consensus paper (1) and listed in 

Supporting Information Table S1. The accuracy of the numeric approximation was assessed using two 

metrics: (1) overall normalized root-mean-square error  NRMSE = ‖∆MGKM  t − ∆Mnumeric  t ‖2/

‖∆MGKM  t ‖2, and (2) maximum deviation between GKM and the numeric approximation (Max 

Deviation) = max  ∆MGKM  t − ∆Mnumeric  t  . Blood flow 𝐹 was not chosen as a sweeping parameter 

because a change in blood flow does not affect the NRMSE but linearly affects the max deviation. 

Simulations of two perfusion values (0.3 and 0.6 mL/g/min) for gray matter were performed. The effects 

of a change in spin-lattice relaxation 𝑇1 on the two metrics are negligible and therefore spin-lattice 

relaxation 𝑇1 was omitted. 

 

3.3 Numerical Validation against spASL and MRF-ASL 



To demonstrate the generality of the framework to various unconventional sequences, we 

validated the numeric approximation without MT effects against the customized signal expressions of 

spASL (34,35,43) and MRF-ASL (36). Each sequence’s own customized signal expression is analytically 

derived with GKM and described in a respective reference in detail. 

For spASL, theoretical signal evolutions in Figure 1 of Capron et al. (34) were reproduced using 

the numeric approximation with TR = 𝜏 = 10 msec. A spASL pulse sequence consists of 4 phases: imaging 

during label, recovery, imaging during control, and recovery. The duration of an acquisition phase is 

denoted as tp and the recovery delay as RD. These 4 phases are repeated for Nlines (number of k-space 

lines). Four spASL simulations of the mouse heart with different imaging parameters (Nlines, tp, RD) 

were performed assuming no transit delay and T1 relaxation of arterial magnetization. Other fixed 

parameters were 𝑇1= 1400 msec, 𝜃= 8°, 𝐹 = 6 mL/g/min, 𝜆 = 0.95, 𝛼0 = 2𝛽 = 1 (saturation). The numeric 

approximation incorporates perfect spoiling at the end of TR to simulate FLASH-readouts. 

For MRF-ASL, a simulation study of Su et al. (36) was reproduced with 𝜏 = 1 msec. An MRF-ASL 

pulse sequence consists of randomly ordered control and label scans, each comprising a period of 

pulsed labeling and an acquisition without a post labeling delay. We used 30 TRs (a total of 30 scans) for 

a clear illustration of signal evolutions. A labeling duration time series was generated with a half-cycle 

cosine function gradually decreasing from 450 to 72 msec. A pseudo-randomized order of label and 

control was used. Other fixed parameters were 𝜃= 40°, 𝐹 = 0.6 mL/g/min, 𝑇𝐷/𝑇1/𝑇1𝑏= 1000/1200/1650 

msec, 𝑀0 = 1, 𝜆 = 0.9, 𝛼0 = 2𝛼 = 2 (inversion). A single compartment model consisting of a tissue 

compartment without a pass-through artery compartment was used for both GKM and the numeric 

approximation. The T2 decay of transverse magnetization was not considered when deriving theoretical 

signal evolutions with GKM. Off-resonance (Δ𝑓 = 30 Hz) and 𝑇2 effects (𝑇2 = 80 msec) were simulated 

with the numeric approximation. 

 

3.4 Modeling Flow and MT effects in bSSFP and SPGR 

 We demonstrated simultaneous modeling of flow, 𝑇2, and MT effects in simulations using 

steady-state imaging sequences: bSSFP (29,44) and SPGR (45). Steady-state bSSFP and SPGR signals were 

obtained at flip angles from 1° to 80° in increments of 1°. We assumed instantaneous RF rotation and 

thus the mean saturation rate averaged over TR was used (8,40,41). Signals for four cases were 

generated: 1) no MT, no flow, 2) no MT, flow, 3) MT, no flow, and 4) MT, flow. The second 

approximation was compared with the exact evaluation (i.e., matrix exponential). Simulation 

parameters (white matter at 1.5T) were obtained from Gloor et al. (29): 𝑀0
𝑓

 = 1, 𝑇1
𝑓

 = 585 msec, 𝑇2
𝑓

 = 81 



msec,  𝑓 = 0.157, 𝑘𝑓= 4.45, 𝑇1
𝑠 = 1000 msec, 𝑇2

𝑠 = 12μsec, 𝐺 = 14 μsec, and 𝐹 = 4 mL/g/min, 𝜆 = 0.9, 𝜏 = 

4 μsec; For bSSFP, pulse duration = 230 μsec, TR = 2.92 msec, TE = TR/2; For SPGR, pulse duration = 200 

μsec, TR = 5 msec, TE = TR/2. 

 

4. RESULTS 

Figure 2 compares PASL and PCASL signals obtained with GKM and the numeric approximation 

using fixed timesteps of 3 and 35 msec. For timesteps of 3 and 35 msec, the maximum deviations 

between GKM and the numeric approximation were 0.002% and 0.05% for PASL (2e, 2f), and 0.002% 

and 0.042% for PCASL (2g, 2h), respectively. 

Figure 3 shows NRMSE, maximum deviation, and computation time as a function of the 

timestep (mean ± one standard deviation) for PASL and PCASL with tissue blood flow of 0.6 mL/g/min 

(Supporting Information Figure S1 for tissue blood flow of 0.3 mL/g/min). For both labeling methods, 

the NRMSE increased approximately linearly with respect to timestep (3a, 3b). The max deviation also 

increased linearly with respect to timestep (3c, 3d). The mean (𝜎) and standard deviation (𝜇) of the max 

deviation increased linearly with respect to tissue blood flow, but the coefficient of variation (𝐶𝑉 =

𝜎/𝜇 ∗ 100%) remained the same (3c, S1c). The linear slope of the NRMSE for PASL was higher than that 

for PCASL. A larger standard deviation in the NRMSE for PASL was observed compared with PCASL. The 

linear slope of the maximum deviation for PASL was lower than that for PCASL while a similar standard 

deviation was observed for both labeling methods. For 1 and 35 msec, the mean computation times 

were 4.60 and 0.14 msec for PASL, and 4.42 and 0.14 msec for PCASL, respectively.  

Figure 4 compares the theoretical signal evolutions for spASL obtained with a customized signal 

expression and the numeric approximation. This example demonstrates the numeric approximation can 

model the effects of flow under imaging RF pulses. For all cases, the maximum signal difference was < 0. 

97%. 

Figure 5 compares the MRF-ASL signal evolutions obtained with GKM and the numeric 

approximation. The numeric approximation shows excellent agreement with GKM with a maximum 

signal difference of 0.002%. The numeric approximation deviates from GKM when 𝑇2 effects and off-

resonance are modeled. When a spoiling gradient is used after each acquisition to dephase transverse 

magnetization, 𝑇2 effects would not be a concern, and the numerical simulation results would be 

consistent with that from GKM. 



Supporting Information Figure S2 shows steady-state bSSFP and SPGR signals for white matter 

at 1.5T calculated for four combinations of MT and flow effects. The constant un-labeled inflow causes 

an increase in both steady-state bSSFP and SPGR signals. Signals obtained with the second 

approximation shows excellent agreement with those obtained with exact evaluation. This justifies the 

use of the second approximation to replace computationally expansive evaluation of the matrix 

exponential.  

 

5. DISCUSSION 

We have demonstrated a numerical approximation to the general kinetic model for ASL 

quantification. We have also characterized the tradeoff between accuracy and computation time, 

through the selection of the timing interval. This numeric approximation is first validated against GKM 

for PASL and PCASL, and further validated against customized signal expressions of non-standard ASL 

pulse sequences, spASL and MRF-ASL. The numerical approach provides an excellent approximation to 

GKM as long as the timestep is sufficiently small (Figures 2 and 3). The important feature of the 

numerical approach is the piecewise constant approximation of blood inflow between excitation ‘i’ and 

‘i+1’. As the distance between consecutive excitations becomes longer, the error in the estimation of the 

amount of labeled blood increases. 

One advantage of the proposed approach is that both transient-state and steady-state signal 

evolutions can be generated in the presence of flow, 𝑇2 effects, off-resonance, MT effects, and irregular 

timing of RF labeling. This key feature 1) makes it applicable to highly challenging ASL scenarios, 

including cardiac ASL which suffers from irregular timing due to ECG-gating and heart variability, and 2) 

enables more flexible and irregular quantitative ASL experiments such as recent attempts at MRF-ASL. 

Another advantage of the proposed approach is that dispersion effects can be easily incorporated, 

because 𝑠(𝑡) can be numerical functions. 

There are several possible extensions to this work. Although we demonstrate simultaneous 

modeling of MT effects and ASL perfusion in simulation studies, experimental verification still remain. 

For non-balanced gradient-echo sequences, signal evolutions can be efficiently predicted using the 

extended phase graph (EPG) framework (46–48) instead of time-intensive isochromat-based Bloch 

simulations. Incorporating the proposed modeling approach to the EPG framework could provide time-

efficient computation of ASL signal evolutions for a broad range of pulse sequences. Recent progress in 

MRF-ASL might be also benefit from this work, particularly (and interestingly) those utilizing deep 



learning approaches. The proposed numerical approximation with matrix formalism can potentially be 

combined with deep learning to further improve quantification of flow (49-51). 

  

6. CONCLUSION 

We demonstrate and validate an extension to the Bloch equations, termed Bloch-McConnell-

Flow equations, which can simultaneously model the effects of flow with various other effects. We also 

demonstrate and validate an extension to Jaynes’ matrix formalism to provide a numeric approximation 

to these BMF equations. In simulation, the proposed approach provides an arbitrarily accurate 

approximation to the general kinetic model.  A single timestep tuning parameter allows one to tradeoff 

accuracy for computational speed. The proposed approach will enable quantification of transient-state 

ASL and ASL with irregular timing of RF labeling and/or severe off-resonance, which are challenging for 

current techniques. 

 

Data Availability Statement: The code and data that support the findings of this study are openly 

available in GitHub at https://www.github.com/usc-mrel/Bloch_Flow_MT. 
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Figure 1. Illustration of the Bloch simulation with flow effects. The extended matrix formalism is 

demonstrated over a few timesteps. The T1 decay of labeled arterial blood (green) over each timestep is 

exaggerated. The symbols 𝒖𝑖/𝜃𝑖/𝑡𝑖/𝜉𝑖/𝜏𝑖  indicate rotation axis/rotation angle/start time/measurement 

time/duration for the 𝑖𝑡ℎ  timestep. Using a piecewise constant approximation, the actual amount of 

labeled blood over the 𝑖𝑡ℎ  timestep of duration 𝜏𝑖  (green) is overestimated by the area of a rectangle 

(dashed red box). During each timestep, tissue magnetization relaxes with a new pseudo 𝑀0 term: 

𝑀0 + 𝑠(𝑡𝑖)𝑇1𝑎𝑝𝑝 . The magnetization of the previous timestep 𝐌𝑑 [𝑖 − 1]  is set to the initial 

magnetization 𝐌𝑎 [𝑖] for the 𝑖𝑡ℎ  timestep (black arrow). The 𝑖𝑡ℎ  RF excitation yields 𝐌𝑏 [𝑖] (blue arrow) 

and 𝐌𝑑 [𝑖] is obtained after subsequent applications of relaxation, clearance, and exchange operators. 

This figure indicates the flexibility of the extended matrix formalism, where each timestep can have 

varying parameters. 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Comparison of simulated PASL and PCASL signals obtained with Buxton’s general kinetic model 

(GKM) and the proposed numeric approximation (numeric). Simulation parameters for PASL/PCASL are 

𝐹 = 0.6 mL/g/min, 𝑇𝐷  = 700 msec, 𝑇𝑊  = 800/1800 msec, 𝑇1/𝑇1𝑏= 1820/1650 msec, 𝑀0 = 1, 𝜆 = 0.9, 𝛼 

(labeling efficiency for PASL/PCASL) = 0.98/0.85, 𝛼0 = 2𝛼 (inversion). PASL signals are calculated with 

single RF labeling and a fixed timestep of (a) 𝜏 = 3 and (b) 𝜏 = 35 msec. PCASL signals are calculated with 

a fixed timestep of (c) 𝜏 = 3 and (d) 𝜏 = 35 msec. Gray bars indicate application of RF labeling. The signal 

differences between the GKM and the numeric approximation are shown in the 2nd row (e, f, g, and h). 

In case of 𝜏 ≤ 35 msec, the maximum signal difference was always < 0.06% for both labeling methods. 

 

 

 

 

 

 

 

 

 

 



 

Figure 3. Performance of the proposed approximation depends on the timestep used.  Here, we plot 

NRMSE, max deviation, and computation time as a function of timestep (𝜏, x-axis). Each plot shows the 

mean (line) ± one standard deviation (shaded area). (a) NRMSE for PASL. (b) NRMSE for PCASL. (c) Max 

deviation between GKM and the proposed numeric approximation for PASL. (d) Max deviation between 

GKM and the proposed numeric approximation for PCASL. (e) Computation time for PASL. (f) 

Computation time for PCASL.  Simulation parameters for both labeling methods are listed in Supporting 

Information Table S1. 

 

 

 

 

 

 

 

 

 

 



 

Figure 4. Comparison of theoretical signal evolutions for spASL obtained with a customized signal 

expression (Cine-ASL) and the proposed numeric approximation (numeric). Figure 1 of Capron et al. (34) 

is reproduced. The figure shows signal evolutions over 6 (Nlines) repetitions of 4 phases: imaging during 

label, recovery, imaging during control, and recovery. Signal evolutions for 4 different imaging 

parameters (RD, 𝑡𝑝 ) are shown. (a) Short RD = 0.01 sec, short 𝑡𝑝  = 0.26 sec, (b) Short RD = 0.01 sec, long 

𝑡𝑝  = 3.12 sec, (c) Long RD = 3.50 sec, short 𝑡𝑝  = 0.26 sec, and (d) Long RD = 0.01 sec, long 𝑡𝑝  = 3.12 sec. 

 

 

 

 

 

 



 

Figure 5. Comparison of MRF-ASL signal evolutions obtained with a customized signal expression based 

on GKM (GKM) and the proposed numeric approximation (numeric). (1st row) A labeling time series 

consists of a pseudo-randomized order of label (red) and control (blue) scans. The horizontal axis 



represents the duration of a scan in msec. The duration of excitation and acquisition is neglected. The 

longitudinal (2nd row) and transverse (3rd row) components of MRF-ASL signal evolutions are obtained 

without MT effects for both GKM and the numeric approximation. Green regions indicate “Label”. The 

numeric approximation calculated without 𝑇2 effects and off-resonance shows excellent agreement with 

GKM (4th row). The numeric approach can provide more realistic signal evolutions with 𝑇2 effects (black) 

and with 𝑇2 effects and off-resonance (orange). For short labeling duration (≤ 3 ∙ 𝑇2), the transverse 

magnetization is not completely decayed to zero and starts to affect the longitudinal magnetization of 

an MRF-ASL signal evolution. When a spoiling gradient is used after each acquisition to dephase 

transverse magnetization, 𝑇2 effects would not be a concern, and the numerical simulation results 

would be consistent with that from GKM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUPPLEMENTAL FIGURE CAPTIONS 

 

Supporting Information Figure S1. Performance of the proposed approximation for tissue blood flow of 

0.3 mL/g/min. (a) NRMSE for PASL. (b) NRMSE for PCASL. (c) Max deviation between GKM and the 

proposed numeric approximation for PASL. (d) Max deviation between GKM and the proposed numeric 

approximation for PCASL. (e) Computation time for PASL. (f) Computation time for PCASL. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Information Figure S2. Simulations of steady-state (left) bSSFP and (right) SPGR signals for 

white matter at 1.5T obtained (blue) without MT and flow effects, (red) without MT and with flow 

effects, (orange) with MT and without flow effects, and (purple) with both MT and flow effects. Lines 

and dots indicate steady-state signals calculated without (Exact) and with (Approx.) the second 

approximation, respectively.  

 

Supporting Information Table S1. Simulation parameters for Figure 3. 

Type Symbol Parameter 
Sweep: Range (min:step:max) 

Fixed: Value 

Sweep 

𝑇𝐷  
PASL transit delay  500:1:1500 (msec) 

PCASL transit delay 500:1:1500 (msec) 

𝑇𝑊  
PASL bolus duration  500:10:1000 (msec) 

PCASL bolus duration 1500:10:2000 (msec) 

Fixed 

𝐹 Blood flow (low/high) 0.3/0.6 (mL/g/min) 

𝑇1 Spin-lattice relaxation of tissue 1200 (msec) 

𝑇2 Spin-spin relaxation of tissue ∞ (msec) 

Δ𝑓 Off-resonance 0 (Hz) 

𝑇1𝑏  Spin-lattice relaxation of blood 1650 (msec) 

𝜆 Tissue/blood partition coefficient of water 0.9 

 

 

 


