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Purpose: To develop a numerical approximation to the general kinetic model for 
arterial spin labeling (ASL) quantification that will enable greater flexibility in ASL 
acquisition methods.
Theory: The Bloch-McConnell equations are extended to include the effects of 
single- compartment inflow and outflow on both the transverse and longitudinal mag-
netization. These can be solved using an extension of Jaynes’ matrix formalism with 
piecewise constant approximation of incoming labeled arterial flow and a clearance 
operator for outgoing venous flow.
Methods: The proposed numerical approximation is compared with the general 
kinetic model using simulations of pulsed labeling and pseudo-continuous labe-
ling and a broad range of transit time and bolus duration for tissue blood flow of  
0.6 mL/g/min. Accuracy of the approximation is studied as a function of the timestep 
using Monte-Carlo simulations. Three additional scenarios are demonstrated:  
(1) steady-pulsed ASL, (2) MR fingerprinting ASL, and (3) balanced SSFP and 
spoiled gradient-echo sequences.
Results: The proposed approximation was found to be arbitrarily accurate for pulsed 
labeling and pseudo-continuous labeling. The pulsed labeling/pseudo-continuous la-
beling approximation error compared with the general kinetic model was less than 
0.002% (<0.002%) and less than 0.05% (<0.05%) for timesteps of 3 ms and 35 ms,  
respectively. The proposed approximation matched well with customized signal ex-
pressions of steady-pulsed ASL and MR fingerprinting ASL. The simulations of si-
multaneous modeling of flow, T2, and magnetization transfer showed an increase in 
steady-state balanced SSFP and spoiled gradient signals.
Conclusion: We demonstrate a numerical approximation of the “Bloch–McConnell 
flow” equations that enables arbitrarily accurate modeling of pulsed ASL and pseudo-
continuous labeling signals comparable to the general kinetic model. This enables 
increased flexibility in the experiment design for quantitative ASL.
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1 |  INTRODUCTION

Tissue perfusion is an important indicator of organ health 
that can be measured by MRI with or without contrast agents. 
Arterial spin labeling (ASL) is the most widely used noncon-
trast approach, and has been applied extensively to brain,1 
kidney,2 and more recently heart.3 Arterial spin labeling in-
volves labeling upstream blood using RF pulses, and then 
imaging tissue as it is perfused, within the relatively short 
window of T1 relaxation.

The ASL quantification was first demonstrated using 
Detre’s “apparent T1” approach,4,5 which combines the lon-
gitudinal component of the Bloch equations with single- 
compartment kinetics and derives an analytical expression 
for the longitudinal magnetization in the presence of flow. 
Buxton’s general kinetic model (GKM)6 reformulates Detre’s 
apparent T1 approach as a convolution problem without re-
quiring the Bloch equations, under a general setting in which 
the transit delay and bolus duration are taken into account. 
The GKM is used widely because it is simple, analytical, and 
provides excellent intuition into signal formation. However, 
it is nontrivial for GKM to model the effects of flow with 
magnetization transfer (MT),7-9 T2 effects, off-resonance, and 
irregular timing of labeling.

Many previous approaches in ASL have generalized the 
Bloch equations to include transit delay and bolus duration,10 
MT effects,11-15 water exchange,16-18 and dispersion.19-21 
However, all approaches tried to generalize only the longitu-
dinal component of the Bloch equations; therefore, simulta-
neous modeling of flow with T2 effects and off-resonance has 
not been demonstrated.

Unlike the approaches in ASL, the full Bloch equations 
(containing both transverse and longitudinal magnetiza-
tion) have been extended with additional terms to model 
the physical phenomenon of interest. Examples include the 
Bloch–Torrey equations for diffusion22 and velocity,23 and 
the Bloch-McConnell equations for MT24 and CEST.25,26 
These modified Bloch equations are efficiently solved with a 
variant of propagator approaches (ie. matrix formalism).27,28 
Inspired by its great flexibility to model various effects, this 
work seeks to develop a framework based on matrix formal-
ism that can simultaneously model the effects of flow with 
the aforementioned effects. We extend the Bloch equations 
with MT effects (a binary spin-bath model)29-31 by adding 
single-compartment inflow and outflow terms. We denote 
these as “Bloch–McConnell flow” (BMF) equations.

To solve the BMF equations, we derive an extension of 
Jaynes’ matrix formalism32 with two approximations. This 

approach retains the advantages of Jaynes’ matrix formalism, 
such as the ability to include off-resonance, the slice excitation 
profile, and B1 transmit (B+

1
) inhomogeneity. This numerical 

approach is particularly attractive for ASL scenarios that have 
been cumbersome for existing GKM-based approaches, such 
as irregular timing of labeling,33,34 transient- state signal evo-
lutions such as balanced SSFP (bSSFP) steady-pulsed ASL 
(spASL)35 and MR fingerprinting ASL (MRF-ASL).36,37

We first present the proposed BMF equations, and then the 
extended matrix formalism with numerical approximation. 
We demonstrate that accuracy depends on the timestep used 
for updating magnetization states. The numeric approximation 
is validated against GKM for the case of single- compartment 
kinetics with pulsed labeling and pseudo- continuous label-
ing. Monte-Carlo simulations are then used to investigate the 
effect of the timestep on the accuracy of a numeric approxi-
mation compared with GKM. The flexibility of this approach 
is demonstrated using two nonstandard ASL pulse sequences. 
For each sequence our approach was validated against the ex-
isting quantification models.

2 |  THEORY

2.1 | Bloch flow equations

For simplicity, we assume single-compartment kinet-
ics, instantaneous mixing between arterial blood water and 
tissue, and only the longitudinal magnetization of inflow-
ing arterial blood is modified. For tissue magnetization 
M (t)=

[
Mx(t), My(t), Mz(t)

]T under perfusion, the proposed 
Bloch flow equations (in the rotating frame) model the effects 
of incoming arterial flow (constant unlabeled and time-varying 
labeled longitudinal magnetization) and outgoing venous flow 
on the transverse and longitudinal magnetization as follows:

where M0 is the equilibrium magnetization per gram of tissue; 
F is the perfusion in milliliters of blood per gram of tissue per 
minute; � is the tissue-blood partition coefficient in milliliters 
of blood per gram of tissue; and s (t) refers to the ASL bolus sig-
nal. Note that the model implicitly assumes Mblood

0
=Mtissue

0
∕�.  

Equation 1 can be expressed in matrix-vector notation as 
follows:

(1)

dM(t)

dt
= M (t)×𝛾B (t)−

Mx(t)⃗i+My(t)⃗j

T2

+
(M0−Mz(t))k⃗

T1

+
(

F

𝜆
M0+s (t)

)
k⃗−

F

𝜆

(
Mx (t) i⃗ + My (t) j⃗ + Mz (t) k⃗

)
,
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where G (t) ⋅r is the dot product of a gradient vector G (t) in 
Gauss per centimeter and a spatial position vector r in cen-
timeters; Δf  is off-resonance in hertz; B1,x (t) and B1,y (t) are 
the x and y components of an RF pulse in Gauss. Note that 
the ASL bolus signal is the magnetization flow rate per gram 
of tissue, expressed in units of magnetization per gram of tis-
sue per second. The Bloch Flow equations possess three ad-
ditional features compared with the original Bloch equations: 
(1) The clearance of transverse and longitudinal magnetiza-
tion by venous flow is present in the main diagonal and forms 
apparent T2 and T1 relaxation times for transverse and lon-
gitudinal magnetization, respectively; (2) unlabeled arterial 
blood is constantly added to the longitudinal magnetization, 
creating a blood flow–dependent equilibrium magnetization; 
and (3) time-varying labeled arterial blood decreases the lon-
gitudinal magnetization and creates a time-dependent equi-
librium magnetization (note that s (t) has the negative sign).

The theory is applicable for different labeling patterns and 
methods. We assume a perfectly rectangular bolus of arte-
rial blood for pulsed ASL (PASL). The ASL bolus signal is 
defined differently for PASL and continuous ASL (CASL)/
pseudo-continuous ASL (PCASL):

where M is the number of labeling pulses; t
�,i is the applica-

tion of the ith labeling; �0 is the labeling efficiency (1 for sat-
uration, 2 for inversion, 0 for control); T1b is the longitudinal 
relaxation time of arterial blood; u (t) is the Heaviside step 
function; TD is the arterial transit time in seconds; and TW is 
the bolus duration in seconds. In general, the ASL bolus sig-
nal s (t) can be obtained from either an analytical expression 
or a numerical computation (eg. dispersion19,21) as long as it 
can be evaluated at a particular time t. 

2.2 | Bloch–McConnell Flow equations

The Bloch flow equations can be further extended to include 
MT effects. The binary spin-bath MT model30,31 divides tis-
sue magnetization between a liquid pool ( f ) of free water and 
a semisolid pool (s) of protons bound to macromolecules, and 
neglects net exchange of transverse magnetization due to a 
very short transverse relaxation time of the semisolid pool  
(Ts

2
~ 10 μs).38 Following previous approaches,11,13,39 we as-

sume that blood water spins exchange only with the liquid 
pool of tissue magnetization. For free water and semisolid 
pool protons M (t)=

[
M

f
x(t), M

f
y(t), M

f
z (t), Ms

z
(t)
]T

 under per-

fusion, the BMF equations are then written as

where

(2)

⎡⎢⎢⎢⎣

dMx

dt
dMy

dt
dMz

dt

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

−
�

1

T2

+
F

�

�
�G (t) ⋅r+2�Δf −�B1,y (t)

− (�G (t) ⋅r+2�Δf ) −
�

1

T2

+
F

�

�
�B1,x (t)

�B1,y (t) −�B1,x (t) −
�

1

T1

+
F

�

�

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣

Mx

My

Mz

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

0

0�
1

T1

+
F

�

�
M0+s (t)

⎤⎥⎥⎥⎦
,

(3a)
PASL: s (t)=

M∑
i=1

−
F

�
M0�0e−(t−t

�,i)∕T1b

�
u
�
t− t

�,i−TD,i

�
−u

�
t− t

�,i−TD,i−TW,i

��
,

(3b)

CASL/(PCASL): s (t) =−
F

�
M0�0e

−TD∕T1b

×
(
u
(
t−T

D

)
−u

(
t−T

D
−T

W

))
,

(4)
dM (t)

dt
=(� (t) + � + � + �)M (t) + D (t) ,

(5)

� (t)=

⎡
⎢⎢⎢⎢⎣

0 �G (t) ⋅r+2�Δf −�B1,y (t) 0

− (�G (t) ⋅r+2�Δf ) 0 �B1,x (t) 0

�B1,y (t) −�B1,x (t) 0 0

0 0 0 −W (Δ(t), t)

⎤
⎥⎥⎥⎥⎦

,

�=

⎡⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 −kf ks

0 0 kf −ks

⎤⎥⎥⎥⎥⎦
,�=

⎡⎢⎢⎢⎢⎢⎣

−
F

�
0 0 0

0 −
F

�
0 0

0 0 −
F

�
0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

,�=

⎡⎢⎢⎢⎢⎢⎢⎣

−
1

T
f

2

0 0 0

0 −
1

T
f

2

0 0

0 0 −
1

T
f

1

0

0 0 0 −
1

Ts
1

⎤⎥⎥⎥⎥⎥⎥⎦

, and

D (t)=

⎡⎢⎢⎢⎢⎢⎢⎣

0

0�
1

T
f

1

+
F

�

�
M

f

0
+s (t)

1

Ts
1

Ms
0

⎤⎥⎥⎥⎥⎥⎥⎦

.
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where matrix � (t) describes evolution due to gradients, 
off-resonance (no separate free precession operator), and RF 
pulses; � describes evolution due to exchange; � describes 
evolution due to the clearance of transverse and longitudinal 
magnetization by venous flow; � describes evolution due to 
relaxation; D (t) is the time-dependent equilibrium magne-
tization; M

f

0
 and Ms

0
 denote the equilibrium magnetizations 

for the liquid and semisolid pools, respectively; kf  and ks 
refer to forward ( f → s) and reverse (s→ f ) exchange rates 
between two compartments in sec−1; and the fundamental  

rate constant k relates them by k= kf∕Ms
0
= ks∕M

f

0
. The 

semisolid pool fraction f  is defined as f =Ms
0
∕M

f

0
 and re-

lates forward and reverse exchange rates by ks = kf∕f . The 
instantaneous saturation rate W (Δ(t), t) describes the effect 
of pulsed irradiation (frequency offset Δoffset) on the longitu-
dinal magnetization of the semisolid protons8 and is defined 
as W (Δ(t), t)=��2‖B1(t)‖2

2
G
�
Δ(t), Ts

2

�
 in rad/sec, where 

G
(
Δ(t), Ts

2

)
 is the absorption lineshape of the semisolid pool 

in seconds, and Δ (t)≜Δoffset−(�G (t) ⋅r+2�Δf ) is the ad-
justed time-dependent frequency offset to account for local 
field shifts by gradient fields and off-resonance on the ab-
sorption response.

2.3 | Extended matrix formalism

The Bloch equations can be solved efficiently using Jaynes’ 
matrix formalism.32 Here we derive evolution operators for 
the BMF equations. We assume that the duration of a signal 
evolution is divided into N timesteps, and each timestep is 
associated with an RF pulse (x and y components) (Bi), gradi-
ent (Gi), start time (ti), measurement time (�i), and duration 
(�i) of the timestep. Assuming a piecewise constant RF pulse 
and G (t) over each timestep, the magnetization evolves due 

to gradients and RF pulses as M
(
ti+�i

)
=RiM

(
ti
)
 where 

Ri = exp
(
�
(
ti
)
�i

)
. This operator Ri consists of a rotation 

matrix R
(
ui, �i

)
 about the axis ui =

[
ux, uy, uz

]T of an angle �i 
for the free water and a saturation term for the semisolid pool:

where

�i = ��i‖B
�
ti
� ‖2, B

(
ti
)
=
[
B1,x(ti), B1,y(ti), G(ti) ⋅r+2�Δf∕�

]T,  
and ui =B(ti)∕‖B(ti)‖2. Note that we use a left-handed 
convention for the rotation in the right-handed coordi-
nate system. The general solution to the temporal evolu-
tion of the magnetization due to exchange, clearance, and  
relaxation is

Using a piecewise constant approximation of s (t) over 
duration �i, that is, D (�)=D

(
ti
)
 for ti ≤ � ≤ ti+�i and this 

formula ∫ t

0
eA�d� =

(
eAt −I

)
A

−1, we simplify the integral 
equation and obtain a closed-form expression as follows:

With the second approximation that relaxation and ex-
change can be decoupled,40,41 we get exp

(
(�+�+�) �i

)
≅

exp
(
��

i

)
⋅exp

(
��

i

)
⋅exp

(
��

i

)
=A

(
�

i

)
C
(
�

i

)
E
(
�

i

)
, where 

exchange A
(
�i

)
, clearance C

(
�i

)
, and relaxation E

(
�i

)
 oper-

ators are defined as

(6)Ri =

[
R
(
ui, �i

)
0

0 exp
(
−W

(
Δ(ti), ti

)
�i

)
]

,

(7)
R (u, �)=

⎡
⎢⎢⎢⎣

cos �+u2

x
(1−cos �) u

x
u

y (1−cos �)−u
z
sin � u

x
u

z (1−cos �)+u
y

sin �

u
y
u

x (1−cos �)+u
z
sin � cos �+u2

y
(1−cos �) u

y
u

z (1−cos �)−u
x

sin �

u
z
u

x (1−cos �)−u
y

sin � u
z
u

y (1−cos �)+u
x

sin � cos �+u2

z
(1−cos �)

⎤
⎥⎥⎥⎦

,

(8)

M
(
ti+�i

)
= e(�+�+�)�i M

(
ti
)
+∫

ti+�i

ti

e(�+�+�)(ti+�i−�)D (�) d�.

(9)
M

(
t
i
+�

i

)
≅ e

(�+�+�)�i M
(
t
i

)
+
(
e
(�+�+�)�i −I

)
(�+�+�)−1

D
(
t
i

)
.

(10)

A
�
�

i

�
=

1

f +1

⎡
⎢⎢⎢⎢⎣

f +1 0 0 0

0 f +1 0 0

0 0 1+ f exp
�
− (f +1) ks�

i

�
1−exp

�
− (f +1) ks�

i

�
0 0 f − f exp

�
− (f +1) ks�

i

�
f +exp

�
− (f +1) ks�

i

�

⎤
⎥⎥⎥⎥⎦

,

C
�
�

i

�
=

⎡⎢⎢⎢⎢⎣

e−�iF∕� 0 0 0

0 e−�iF∕� 0 0

0 0 e−�iF∕� 0

0 0 0 1

⎤⎥⎥⎥⎥⎦
, and E

�
�

i

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

e

−
�i

T
f

2 0 0 0

0 e

−
�i

T
f

2 0 0

0 0 e

−
�i

T
f

1 0

0 0 0 e
−

�i

T
s

1

⎤⎥⎥⎥⎥⎥⎥⎦

.
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Therefore, the temporal evolution in the absence of RF for 
the BMF equations can be approximated as

where T1app =1∕T
f

1
+F∕� is the apparent T1 relaxation time 

for the (liquid pool) longitudinal magnetization. Note that 
with the first approximation, the amount of labeled blood over 
a timestep is estimated by multiplying the ASL bolus signal 
s (t) at the start time ti of the ith timestep with duration �i (see 
Figure  1). This approximation is valid, provided that the T1 
decay of labeled blood is slow (or negligible) over the duration 
of each timestep. For the BMF equations without MT effects 
(Bloch flow equations), we do not need the second approxi-
mation, as ΓΞ=ΞΓ. The temporal evolution in the absence 
of RF for the Bloch flow equations can be obtained by setting 
Ms

0
=0, kf =0, ks =0, A

(
�i

)
= I in Equation 10. Note also that 

without considering MT effects, for each timestep the liquid 
pool protons (tissue water) relax with a new time-dependent 
pseudo equilibrium magnetization as follows: Mf

0
+s

(
ti
)

T1app.
Using the extended matrix formalism, the magnetizations 

in the ith timestep of Figure 1 can be expressed as follows:

The magnetization vector Mc [i] at �i for each timestep is 
collected, and this computation is performed from the first to 
the last timestep.

3 |  METHODS

All simulations were performed using MATLAB R2018a 
(MathWorks, Natick, MA) on a PC equipped with one  
1.60-GHz 4-core Intel i5-8250U CPU and 20 GB of RAM.

3.1 | Numerical validation against  
single-delay PASL and PCASL

The proposed numeric approximation was compared 
with GKM for single-compartment kinetics with pulsed 
labeling and pseudo-continuous labeling. For both labe-
ling methods, recommended labeling parameters were 
obtained from the recent consensus paper by Alsop 
et al.1 The PASL/PCASL labeling parameters were  

(11)

M
�
ti+�i

�
=A

�
�i

�
C
�
�i

�
E
�
�i

�
M

�
ti
�
+
�
I−A

�
�i

�
C
�
�i

�
E
�
�i

��
∗

⋯

⎡⎢⎢⎢⎢⎢⎣

0

0�
1+Ts

1
ks

1+T1appkf +Ts
1
ks

��
M

f

0
+s

�
ti
�

T1app

�
+
�

T1appks

1+T1appkf +Ts
1
ks

�
Ms

0�
Ts

1
kf

1+T1appkf +Ts
1
ks

��
M

f

0
+s

�
ti
�

T1app

�
+
�

1+T1appkf

1+T1appkf +Ts
1
ks

�
Ms

0

⎤⎥⎥⎥⎥⎥⎦

(12)Initialization: Ma [i]=Md [i−1]

(13)RF excitation: Mb [i]=RiMa [i]

(14)

Mc [i] =A
(
�i

)
C
(
�i

)
E
(
�i

)
Mb [i]

+
(
I−A

(
�i

)
C
(
�i

)
E
(
�i

))
[
0, 0,…

(
M

f

0
+s

(
ti
)

T1app

)
…

]T

(15)

Md [i] =A
(
�i−�i

)
C
(
�i−�i

)
E
(
�i−�i

)
Mc [i]

+
(
I−A

(
�i−�i

)
C
(
�i−�i

)
E
(
�i−�i

))
[
0, 0,…

(
M

f

0
+s

(
ti
)

T1app

)
…
]T

F I G U R E  1  Illustration of the Bloch simulation with flow effects. The extended matrix formalism is demonstrated over a few timesteps. The 
T1 decay of labeled arterial blood (green) over each timestep is exaggerated. The symbols ui, �i, ti, �i, and �i indicate the rotation axis, rotation angle, 
start time, measurement time, and duration for the ith timestep. Using a piecewise constant approximation, the actual amount of labeled blood 
over the ith timestep of duration �i (green) is overestimated by the area of a rectangle (dashed red box). During each timestep, tissue magnetization 
relaxes with a new pseudo M0 term: M0 +s

(
ti
)

T1app. The magnetization of the previous timestep Md [i−1] is set to the initial magnetization Ma [i] 
for the ith timestep (black arrow). The ith RF excitation yields Mb [i] (blue arrow), and Md [i] is obtained after subsequent applications of relaxation, 
clearance, and exchange operators. This figure indicates the flexibility of the extended matrix formalism, in which each timestep can have varying 
parameters
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TD = 700 ms, TW  = 800/1800 ms, and � (labeling efficiency) =  
0.98/0.85. When MT effects are not considered, super-
scripts are omitted. Simulation parameters for a typi-
cal gray-matter voxel were F = 0.6 mL/g/min, T1∕T1b = 
1200/1650 ms, M0 = 1, � = 0.9, and �0 = 2� (inversion). 
For both labeling methods, the labeling pulse was applied 
at 0 seconds. The duration of signal evolution was 4 sec-
onds. The number of timesteps was calculated as N =T∕�,  
where T  is the total duration and � is the timestep used for 
numeric approximation. The ASL signals were calculated 
with two timesteps: � = 3 ms and � = 35 ms. The shorter 
timestep, 3 ms, was chosen based on its use as the im-
aging TR in cardiac ASL.42 The longer timestep, 35 ms, 
was chosen based on its use as the imaging TR in MRF-
ASL.37 For the numeric approximation, control and label 
signals without and with labeling were first calculated 
at measurement times {�i}

N
i=1

={�i}
N
i=1

= �; then, a differ-
ence between these signals was set to the PASL/PCASL 
signal. For GKM, PASL and PCASL signals were calcu-
lated by evaluating Equations 3 and 5 of Buxton et al,6 
respectively.

3.2 | Numerical accuracy

We investigated the effect of the timestep (�) on the accu-
racy of the approximation. We tested 500 timesteps linearly 
spaced from 0 ms to 50 ms in increments of 0.1 ms. The ASL 
signals with inversion labeling were generated with GKM 
(denoted as ΔMGKM (t)) and the numeric approximation (de-
noted as ΔMnumeric(t))  while sweeping parameters for transit 
delay TD and bolus duration TW. The range of each parameter 
and fixed parameters were adapted from the recent consen-
sus paper1 and listed in Supporting Information Table S1.  
The accuracy of the numeric approximation was assessed 
using two metrics: (1) overall normalized RMS error 
(NRMSE)=‖‖ΔMGKM (t)−ΔΔMnumeric (t)

‖‖2
∕ ‖‖ΔMGKM (t)‖‖2

,  
and (2) maximum deviation between GKM and the numeric  
approximation (max deviation) =max ||ΔMGKM (t)−ΔMnumeric (t)

||.  
Blood flow F was not chosen as a sweeping parameter, be-
cause a change in blood flow does not affect the NRMSE but 
linearly affects the max deviation. Simulations of two perfu-
sion values (0.3 mL/g/min and 0.6 mL/g/min) for gray mat-
ter were performed. The effects of a change in spin-lattice 

F I G U R E  2  Comparison of simulated pulsed arterial spin labeling (PASL) and pseudo-continuous arterial spin labeling (PCASL) signals 
obtained with Buxton’s general kinetic model (GKM) and the proposed numeric approximation (numeric). Simulation parameters for PASL/
PCASL are F = 0.6 mL/g/min, TD = 700 ms, TW = 800/1800 ms, T1∕T1b = 1820/1650 ms, M0 = 1, � = 0.9, � (labeling efficiency for PASL/PCASL) =  
0.98/0.85, and �0 = 2� (inversion). The PASL signals are calculated with single RF labeling and a fixed timestep of � = 3 (A) and � = 35 ms (B). 
The PCASL signals are calculated with a fixed timestep of � = 3 (C) and � = 35 ms (D). Gray bars indicate application of RF labeling. The signal 
differences between the GKM and the numeric approximation are shown in the second row (E-H). In case of � less than or equal to 35 ms, the 
maximum signal difference was always less than 0.06% for both labeling methods
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relaxation T1 on the two metrics are negligible; therefore, 
spin-lattice relaxation T1 was omitted.

3.3 | Numerical validation against 
spASL and MRF-ASL

To demonstrate the generality of the framework to vari-
ous unconventional sequences, we validated the numeric 
approximation without MT effects against the customized 
signal expressions of spASL34,35,43 and MRF-ASL.36 Each 
sequence’s own customized signal expression is analyti-
cally derived with GKM and described in a respective ref-
erence in detail.

For spASL, theoretical signal evolutions in Figure 1 of 
Capron et al34 were reproduced using the numeric approxi-
mation with TR = � = 10 ms. A spASL pulse sequence con-
sists of four phases: imaging during label, recovery, imaging 
during control, and recovery. The duration of an acquisition 
phase is denoted as “tp” and the recovery delay as “RD.” 
These four phases are repeated for N lines (number of k-space 
lines). Four spASL simulations of the mouse heart with differ-
ent imaging parameters (N lines, tp, and RD) were performed 

assuming no transit delay and T1 relaxation of arterial mag-
netization. Other fixed parameters were T1 = 1400 ms,  
� = 8°, F = 6 mL/g/min, � = 0.95, and �0 = 2� = 1 (satura-
tion). The numeric approximation incorporates perfect spoil-
ing at the end of TR to simulate FLASH readouts.

For MRF-ASL, a simulation study of Su et al36 was repro-
duced with � = 1 ms. An MRF-ASL pulse sequence consists 
of randomly ordered control and label scans, each consisting 
of a period of pulsed labeling and an acquisition without a 
post-labeling delay. We used 30 TRs (a total of 30 scans) for 
a clear illustration of signal evolutions. A labeling duration 
time series was generated with a half-cycle cosine function 
gradually decreasing from 450 ms to 72 ms. A pseudo-ran-
domized order of label and control was used. Other fixed 
parameters were � = 40°, F = 0.6 mL/g/min, TD∕T1∕T1b = 
1000/1200/1650 ms, M0 = 1, � = 0.9, and �0 = 2� = 2 (in-
version). A single-compartment model consisting of a tissue 
compartment without a pass-through artery compartment 
was used for both GKM and the numeric approximation. 
The T2 decay of transverse magnetization was not considered 
when deriving theoretical signal evolutions with GKM. Off-
resonance (Δf  = 30 Hz) and T2 effects (T2 = 80 ms) were 
simulated with the numeric approximation.

F I G U R E  3  Performance of the proposed approximation depends on the timestep used. Here, we plot normalized RMS error (NRMSE), 
maximum deviation (max deviation), and computation time as a function of timestep (�, x-axis). Each plot shows the mean (line) ± 1 SD  
(shaded area). A, The NRMSE for PASL. B, The NRMSE for PCASL. C, The max deviation between GKM and the proposed numeric 
approximation for PASL. D, The max deviation between GKM and the proposed numeric approximation for PCASL. E, Computation time for 
PASL. F, Computation time for PCASL. Simulation parameters for both labeling methods are listed in Supporting Information Table S1
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3.4 | Modeling flow and MT effects in 
bSSFP and SPGR

We demonstrated simultaneous modeling of flow, T2, and MT 
effects in simulations using steady-state imaging sequences: 
bSSFP29,44 and SPGR.45 Steady-state bSSFP and SPGR sig-
nals were obtained at flip angles from 1° to 80° in increments 
of 1°. We assumed instantaneous RF rotation; therefore, 
the mean saturation rate averaged over TR was used.8,40,41 
Signals for four cases were generated: (1) no MT, no flow; 
(2) no MT, flow; (3) MT, no flow; and (4) MT, flow. The 
second approximation was compared with the exact evalu-
ation (ie. matrix exponential). Simulation parameters (white 
matter at 1.5 T) were obtained from Gloor et al29: Mf

0
 = 1,  

T
f

1
 = 585 ms, Tf

2
 = 81 ms,  f  = 0.157, kf= 4.45, Ts

1
 = 1000 ms, 

Ts
2
 = 12 μs, G = 14 μs, F = 4 mL/g/min, � = 0.9, and � = 4 μsec;  

for bSSFP, pulse duration = 230 μs, TR = 2.92 ms, and TE =  
TR/2; and for SPGR, pulse duration = 200 μs, TR = 5 ms, 
and TE = TR/2.

4 |  RESULTS

Figure 2 compares the PASL and PCASL signals obtained 
with GKM and the numeric approximation using fixed 
timesteps of 3 ms and 35 ms. For timesteps of 3 ms and  
35 ms, the maximum deviations between GKM and the 
numeric approximation were 0.002% and 0.05% for PASL 
(Figure 2E,F), and 0.002% and 0.042% for PCASL (Figure 
2G,H), respectively.

Figure 3 shows the NRMSE, maximum deviation, and 
computation time as a function of the timestep (mean ± 1 SD)  
for PASL and PCASL with tissue blood flow of 0.6 mL/g/min  
(see Supporting Information Figure S1 for tissue blood 
flow of 0.3 mL/g/min). For both labeling methods, the 
NRMSE increased approximately linearly with respect to 
timestep (Figure 3A,B). The max deviation also increased 
linearly with respect to timestep (Figure 3C,D). The mean 
(�) and SD (�) of the max deviation increased linearly with 
respect to tissue blood flow, but the coefficient of variation 

F I G U R E  4  Comparison of theoretical signal evolutions for steady-pulsed arterial spin labeling (spASL) obtained with a customized signal 
expression (cine-ASL) and the proposed numeric approximation (numeric). Figure 1 of Capron et al34 is reproduced. The figure shows signal 
evolutions over six (N lines) repetitions of four phases: imaging during label, recovery, imaging during control, and recovery. Signal evolutions for 
four different imaging parameters (RD, tp) are shown: short RD = 0.01 seconds, short tp = 0.26 seconds (A); short RD = 0.01 seconds, long  
tp = 3.12 seconds (B); long RD = 3.50 seconds, short tp = 0.26 seconds (C); and long RD = 0.01 seconds, long tp = 3.12 seconds (D)
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F I G U R E  5  Comparison of MR fingerprinting arterial spin labeling (MRF-ASL) signal evolutions obtained with a customized signal 
expression based on GKM (GKM) and the proposed numeric approximation (numeric). First row; A labeling time series consists of a pseudo-
randomized order of label (red) and control (blue) scans. The horizontal axis represents the duration of a scan (in milliseconds). The duration 
of excitation and acquisition is neglected. The longitudinal (second row) and transverse (third row) components of MRF-ASL signal evolutions 
are obtained without magnetization transfer effects for both GKM and the numeric approximation. Green regions indicate “Label.” The numeric 
approximation calculated without T2 effects and off-resonance shows excellent agreement with GKM (fourth row). The numeric approach can 
provide more realistic signal evolutions with T2 effects (black) and with T2 effects and off-resonance (orange). For short labeling duration (≤3 T2), 
the transverse magnetization is not completely decayed to zero and starts to affect the longitudinal magnetization of an MRF-ASL signal evolution. 
When a spoiling gradient is used after each acquisition to dephase transverse magnetization, T2 effects would not be a concern, and the numerical 
simulation results would be consistent with that from GKM
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(CV =�∕� ∗100%) remained the same (Figure 3C and 
Supporting Information Figure S1C). The linear slope of 
the NRMSE for PASL was higher than that for PCASL. A 
larger SD in the NRMSE for PASL was observed compared 
with PCASL. The linear slope of the maximum deviation 
for PASL was lower than that for PCASL, while a simi-
lar SD was observed for both labeling methods. For 1 ms 
and 35 ms, the mean computation times were 4.60 ms and 
0.14 ms for PASL, and 4.42 ms and 0.14 ms for PCASL, 
respectively.

Figure 4 compares the theoretical signal evolutions for 
spASL obtained with a customized signal expression and the 
numeric approximation. This example demonstrates that the 
numeric approximation can model the effects of flow under 
imaging RF pulses. For all cases, the maximum signal differ-
ence was less than 0.97%.

Figure 5 compares the MRF-ASL signal evolutions 
obtained with GKM and the numeric approximation. The 
numeric approximation shows excellent agreement with 
GKM with a maximum signal difference of 0.002%. The 
numeric approximation deviates from GKM when T2 ef-
fects and off-resonance are modeled. When a spoiling gra-
dient is used after each acquisition to dephase transverse 
magnetization, T2 effects would not be a concern, and the 
numerical simulation results would be consistent with that 
from GKM.

Supporting Information Figure S2 shows steady-state 
bSSFP and SPGR signals for white matter at 1.5 T calcu-
lated for four combinations of MT and flow effects. The con-
stant unlabeled inflow causes an increase in both steady-state 
bSSFP and SPGR signals. Signals obtained with the second 
approximation show excellent agreement with those obtained 
with exact evaluation. This justifies the use of the second ap-
proximation to replace computationally expansive evaluation 
of the matrix exponential.

5 |  DISCUSSION

We have demonstrated a numerical approximation to the 
general kinetic model for ASL quantification. We have also 
characterized the tradeoff between accuracy and computa-
tion time, through the selection of the timing interval. This 
numeric approximation is first validated against GKM for 
PASL and PCASL, and further validated against custom-
ized signal expressions of nonstandard ASL pulse sequences, 
spASL and MRF-ASL. The numerical approach provides an 
excellent approximation to GKM as long as the timestep is 
sufficiently small (Figures 2 and 3). The important feature 
of the numerical approach is the piecewise constant approxi-
mation of blood inflow between excitation “i” and “i + 1.” 
As the distance between consecutive excitations becomes 

longer, the error in the estimation of the amount of labeled 
blood increases.

One advantage of the proposed approach is that both 
 transient-state and steady-state signal evolutions can be gen-
erated in the presence of flow, T2 effects, off-resonance, MT 
effects, and irregular timing of RF labeling. This key feature 
(1) makes it applicable to highly challenging ASL scenarios, 
including cardiac ASL, which suffers from irregular timing 
due to electrocardiographic gating and heart variability, and 
(2) enables more flexible and irregular quantitative ASL ex-
periments such as recent attempts at MRF-ASL. Another ad-
vantage of the proposed approach is that dispersion effects 
can be easily incorporated, because s (t) can be numerical 
functions.

There are several possible extensions to this work. 
Although we demonstrate simultaneous modeling of MT 
effects and ASL perfusion in simulation studies, experi-
mental verification still remain. For nonbalanced gradient- 
echo sequences, signal evolutions can be efficiently 
predicted using the extended phase graph framework46-48 
instead of time-intensive isochromat-based Bloch simu-
lations. Incorporating the proposed modeling approach 
to the extended phase graph framework could provide 
time-efficient computation of ASL signal evolutions for a 
broad range of pulse sequences. Recent progress in MRF-
ASL might also benefit from this work, particularly (and 
interestingly) those using deep learning approaches. The 
proposed numerical approximation with matrix formalism 
can potentially be combined with deep learning to further 
improve quantification of flow.49-51

6 |  CONCLUSIONS

We demonstrate and validate an extension to the Bloch 
equations, termed Bloch–McConnell flow equations, 
which can simultaneously model the effects of flow with 
various other effects. We also demonstrate and validate an 
extension to Jaynes’ matrix formalism to provide a numeric 
approximation to these BMF equations. In simulation, the 
proposed approach provides an arbitrarily accurate approx-
imation to the GKM. A single timestep tuning parameter 
allows one to tradeoff accuracy for computational speed. 
The proposed approach will enable quantification of tran-
sient-state ASL and ASL with irregular timing of RF labe-
ling and/or severe off-resonance, which are challenging for 
current techniques.
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FIGURE S1 Performance of the proposed approximation for 
tissue blood flow of 0.3 mL/g/min. (a) NRMSE for PASL. 
(b) NRMSE for PCASL. (c) Max deviation between GKM 
and the proposed numeric approximation for PASL. (d) 
Max deviation between GKM and the proposed numeric ap-
proximation for PCASL. (e) Computation time for PASL. (f) 
Computation time for PCASL
FIGURE S2 Simulations of steady- state (left) bSSFP and 
(right) SPGR signals for white matter at 1.5T obtained (blue) 
without MT and flow effects, (red) without MT and with 
flow effects, (orange) with MT and without flow effects, and 
(purple) with both MT and flow effects. Lines and dots indi-
cate steady- state signals calculated without (Exact) and with 
(Approx.) the second approximation, respectively
TABLE S1 Simulation parameters for Figure 3
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