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Abstract— Quantitative DCE-MRI provides voxel-wise
estimates of tracer-kinetic parameters that are valuable in
the assessment of health and disease. These maps suffer
from many known sources of variability. This variability is
expensive to compute using current methods, and is typi-
cally not reported. Here, we demonstrate a novel approach
for simultaneous estimation of tracer-kinetic parameters
and their uncertainty due to intrinsic characteristics of
the tracer-kinetic model, with very low computation time.
We train and use a neural network to estimate the approx-
imate joint posterior distribution of tracer-kinetic parame-
ters. Uncertainties are estimated for each voxel and are
specific to the patient, exam, and lesion. We demonstrate the
methods’ ability to produce accurate tracer-kinetic maps.
We compare predicted parameter ranges with uncertainties
introduced by noise and by differences in post-processing
in a digital reference object. The predicted parameter
ranges correlate well with tracer-kinetic parameter ranges
observed across different noise realizations and regression
algorithms. We also demonstrate the value of this approach
to differentiate significant from insignificant changes in
brain tumor pharmacokinetics over time. This is achieved
by enforcing consistency in resolving model singularities
in the applied tracer-kinetic model.

Index Terms— Quantitative imaging, DCE MRI, parameter
estimation, uncertainty estimation.

I. INTRODUCTION

DYNAMIC contrast enhanced magnetic resonance imag-
ing (DCE-MRI) aims to estimate sub-voxel parameters of

pathology through fitting of tracer-kinetic (TK) models to con-
trast agent concentration-time-curves [1]. As with other quan-
titative MRI techniques, clinical applicability of DCE-MRI
measurements hinges on accurate, precise, and reproducible
results [2]–[4]. Many of the involved cost functions from
non-linear tracer-kinetic models are, however, not strictly
convex or not even convex. This introduces ambiguity in the
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parameters since many parameter settings fit the measured data
equally well, and further deteriorates accuracy and precision
due to susceptibility to noise and initialization [5]–[8]. Devel-
opment of such estimators is furthermore challenged by lack
of reference methods and ground truth to appropriately assess
these crucial figures of merit.

One solution is non-Bayesian maximum-likelihood estima-
tion (MLE). Such methods typically use optimization algo-
rithms and multiple initializations to solve issues arising from
regions of complete or approximate flatness in the cost func-
tion landscape [6], [9], [10]. More recently, neural networks
have been proposed to shift the computational load from
(frequent) inference to (one-time) training [11]. For these
algorithms, measures of precision are obtained through either
time-consuming Monte-Carlo simulations (MC) with multiple
noise realizations and initializations, or variance estimation
through linear error propagation [12].

Another solution is Bayesian estimation, which reduces
ambiguity and variance in the estimated tracer-kinetic para-
meters by introducing prior information [5]. Measures of
precision can simply be derived from the posterior distrib-
ution [6], [8]. The application of such estimators has two
important limitations. First, one must specify a suitable prior
distribution on the parameters to be estimated. While a good
prior distribution can significantly improve the estimation
quality, a poor choice might deteriorate the result as well [5].
Second, these algorithms are based on Bayes’ rule, which
involves finding the partition function. Numerous approaches
exist in the literature and have been applied to DCE-MRI.
One approach is to obtain the maximum-a-posteriori esti-
mate (MAP) by optimization methods without computation
of the partition function, which further requires Monte-Carlo
simulations to study bias and variance [5], [6]. A second
approach is to linearize the observation model and to
approximate the posterior by a Gaussian distribution which
enables analytic solutions of the iterative update steps in the
Expectation-Maximization algorithm; yet successful conver-
gence may require proper initialization and restarts [8], [13],
[14]. In other approaches, access to the posterior distribution
is obtained through numerical integration of the partition
function [6], or by sampling from it through Markov-Chain
Monte-Carlo methods [10], [15]–[18]. Alternatively, the inte-
gration can be simplified by choice of conjugate-priors [19].
All of these methods either involve substantial computation
time [8], [15]–[17], suffer from convergence issues [13],
or limit the scope of posteriors [8], [13], [14] or priors [19]
that can be used.
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In this work, we propose the use of a neural network to
estimate approximate posterior distribution of tracer-kinetic
parameters. From these posterior distributions, ranges of
tracer-kinetic parameters are derived that allow one to estimate
the parameters as well as make decisions about confidence in
the estimation. While being computationally fast, the proposed
approach is flexible in the choices of priors and applicable
posterior assumptions. As a prior distribution we chose the
non-informative uniform prior. This naturally renders the
estimation task an application of Jaynes’ maximum entropy
principle [20], which maximizes the entropy of the estimated
posterior distribution subject to known constraints, e.g., data-
consistency in this case. We then demonstrate application of
parameter ranges instead of point measurements in treatment
response assessment during longitudinal monitoring of brain
tumor patients at our institution.

II. TRACER-KINETIC MODELING

DCE-MRI monitors wash-in, accumulation, and wash-out
of a T1-shortening contrast agent [1]. The measured four-
dimensional (three spatial dimensions and one time dimension)
signals are converted into concentration-time-curves C (t)
(CTC) for each voxel inside the field of view. This is done
by use of previously measured baseline maps for longitudinal
relaxation T10 and proton density M0 as outlined in [21].
While this conversion is in principle a non-linear, complex
mapping [22], typical parameter settings, i.e., high imaging
flip angle, short echo time, and low dose of bolus, allow for
a linear approximation on the real numbers which maintains
the additive-Gaussian nature of the noise, yet entails different
noise power in each voxel [23], [24].

In parametric DCE-MRI, the voxel concentration-time-
curves are fit to compartmental models to estimate parameters
of local physiology. While many models exist [1], this paper
focuses on the extended Tofts-Kety model (ETK) which is one
of the most widely used models for brain tumors [25], [26].
For this model the concentration C (t) is governed by

C (t)= �
(
θ; Cp

)= vp Cp (t)+Kt
∫ t

0
Cp (τ ) e

− Kt

ve
(t−τ )

dτ. (1)

Here, the arterial input function Cp (t) (AIF) models the bolus
delivery to the compartments over time t , vp and ve are
relative volumes of blood plasma and extra-vascular-extra-
cellular space (EES), respectively, and Kt models the transfer
of contrast agent from plasma to EES [1].

III. BAYESIAN ESTIMATION

A. Variational Approach to Posterior Approximation

The starting point for Bayesian estimation of a parameter
vector θ = (

Kt, vp, ve
)

is the posterior distribution p(θ |C)
which is given by Bayes’ Rule:

p(θ |C) = p(C|θ) p(θ)∫
p(C|ζ ) p(ζ )dζ

, (2)

where p(C|θ) denotes the data model and p(θ) is the prior
distribution on θ . As discussed in Section II, the data model

is given by a normal distribution

p(C|θ) = N
(
�

(
θ; Cp

)
, σ 2

)
. (3)

Similar to previous work on Bayesian estimation for
DCE-MRI we deploy independent uniform distributions for
all three tracer-kinetic parameters of the extended Tofts-Kety
model [6], [17]. Hence, the model does not assume any
physiologically induced correlations between different tracer-
kinetic parameters. Examples of such correlations are tumors
which are known to have proliferated vasculature (vp) while
simultaneously exhibiting increased leakiness (Kt) like pleo-
morphic xanthoastrocytomas [27]. The posterior is, however,
able to capture correlations in θ due to intrinsic collinearity
of the tracer-kinetic model.

To avoid integration in (2), we choose a variational approach
that approximates the posterior by minimizing the Kullback-
Leibler divergence between the approximating distribution
q(θ |C) and the posterior p(θ |C) [19], [28]:

min
�

L = min
�

D
(
q� (θ |C)||p(θ |C)

)
(4)

= min
�

Eq

[
− log

(
p(C|θ) p(θ)

q� (θ |C)p(C)

)]
, (5)

where � denotes the parameter vector for the approximate
posterior distribution function, e.g., the borders of support for
a uniform distribution. Neglecting constant terms and applying
data model and the prior for the tracer-kinetic parameters the
cost function becomes

min
�

1

2σ 2 Eq

[
‖C − �(θ; Cp)‖2

2

]
+ Eq

[
log

(
q� (θ |C)

)]
, (6)

where C and Cp are measured concentration-time-curve and
arterial input function, respectively. σ is the (measured) noise
standard deviation.

The first term in (6) enforces data consistency of the tracer-
kinetic parameters from the approximated posterior distribu-
tion. The second term in (6) resembles a negative differential
entropy and enforces spread of the posterior distribution to
encompass all parameters that could potentially explain the
data. By implicitly maximizing entropy while enforcing a
data consistency constraint this cost formulation is a special
case of Jaynes’ Maximum Entropy Principle [20]. Hence,
the combination of variational approximation and (uninforma-
tive) uniform prior on the tracer-kinetic parameters provides a
clear strategy how to compute the posterior distribution in case
of ambiguity. Such ambiguity may result from unidentifiability
of tracer-kinetic parameters in the low contrast concentration
regime and under excessive noise corruption.

Contour plots of the data consistency cost function exhibit
valleys around the optimum with approximate elliptical shape
(cf. Fig. 5 and Figs. 4a to 4c). A bias analysis [5] further
shows bias for Kt and ve in (1) for many realistic para-
meter combinations (see Section SI of the supplementary
material). The approximation of the posterior distribution
should therefore be capable of predicting parameters inside
ellipsoidal geometries without given preference to the lowest
value for the data consistency as this may lead to false
suggestion during inference. With regard to these observations,
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we chose the posterior distribution to be uniform within
ellipsoidal boundaries which further facilitates to avoid non-
physiological negative parameter ranges and can easily adapt
to non-symmetric valleys in the cost function landscape. This
choice however adds a further layer of approximation to the
method as the solution space of Jaynes’ Maximum Entropy
Problem is known to be the exponential family of distributions
which does not contain the uniform distribution [29].

During the optimization process of (6) the expectation
operation for the data consistency term is replaced by an
empirical average. Random samples � of q� (θ |C) are drawn
according to the following rule:

� = R(�)S(�)X + m(�), (7)

where X ∈ R
3 are uniform samples from the unit ball B .

R(�) ∈ R
3×3 is a rotation matrix, S(�) ∈ R

3×3 is a diagonal
scaling matrix, and m(�) ∈ R

3 is a vector adjusting the center
of the ellipsoid.

Since differential entropy is translation and rotation invari-
ant, the second term in (6) can easily be computed from the
differential entropy H (B) of the uniform unit ball as [30]

Eq
[
log

(
q� (θ |C)

)] = −H (B) − log det S(�). (8)

B. Estimation of Posterior Parameters

One of the objectives of this work is to make Bayesian
estimation computationally feasible in clinical settings. Neural
networks present a way to explicitly express functionality that
would otherwise be only implicitly available such as in form
of solutions to an optimization problem (6). This allows neural
networks to shift the main computational load away from
frequent inference to training, which is typically only done
once.

Intrinsic to parametric DCE-MRI is the coding of many
time frames describing the local dynamics of the contrast
agent into few static parameter values, e.g., Kt, vp, and
ve in the case of maximum likelihood estimation, or the
parameters � of the posterior distribution of Kt, vp, and
ve in the present work. A similar task is achieved by the
encoder part of an autoencoder when used for dimensionality
reduction or denoising [31], [32]. For this reason, we adapt
the encoder structure consisting of fully connected layers with
decreasing numbers of connections as main component of the
neural network architecture [11], [31], [32].

To guide encoding, Ulas et al. [11] deployed a multiscale
(spatial) filter bank which feeds the features it recognizes into
the encoder structure. Following this approach, we preconnect
to the encoder two identical banks of temporal filters, one for
the arterial input function input and one for the concentration-
time-curve input, each with three different lengths and strides:
1) A filter with maximum length and stride. Inspired by
computation of cerebral blood volume, the ratio of the output
of this filter for concentration-time-curve and arterial input
function would allow to compute vp in the absence of contrast
leakage [1]. 2) Measurements of backflux of contrast agent
are typically observed on longer time scales [14], [33]. This
motivates the use of filters with broader temporal scope and
stride to aid estimation of ve. 3) Finally, a filter with short

length and stride is added to allow capture of fast dynamics
at the early phase after bolus arrival. Accurate capture of
the initial phase of the arterial input function is essential
for tracer-kinetic parameter estimation [34]. To be able to
handle different onset times identically we fix the stride of
this filter to 1.

The lengths and strides of the second and third filter as
well as number of encoder layers and the respective widths
were tuned to the task at hand. A description of the tuning
procedure and plots to illustrate the tuning strategy can be
found in Section SII of the supplementary material.

All but the last dense layer are LeakyReLU-activated,
while the last layer is activated with a sigmoid. The sigmoid
activation normalizes the output of the network to lie in the
unit-cube, thus facilitating re-parameterization to respective
meaningful parameter ranges. The complete two-stage neural
network architecture is illustrated in Fig. 1.

The uniform-ellipsoid posterior distribution can be parame-
terized in multiple ways. For the 3-parameter extended Tofts-
Kety model (1), the parameterization of the posterior � ∈ R

9

could naturally be chosen as: three translation, three scaling,
and three rotation parameters. The first data consistency term
in (6) affects all of � , the negative entropy loss (8), however
only the scaling entries in � . To aid training of the network we
therefore parameterize the ellipsoids by the six extreme points
of their major axes and three rotation angles. To further lower
over-parameterization introduced by rotational symmetry we
confine the rotation angles to lie in

[−π
4 , π

4

]
.

With regard to the cost function in (6), the network perfor-
mance is naturally tied to the specific level of noise σ it has
been trained for. Because the conversion of signal-time-curves
to concentration-time-curves entails a scaling of each voxel by
a factor that depends on the baseline T10 and M0 values of that
voxel, the noise level for each of the concentration-time-curves
will be different. We therefore scale arterial input function and
concentration-time-curves on a per voxel basis to match the
noise level of the network prior to the first filter stage.

C. Training Data

We synthesized training data based on the extended Tofts-
Kety model (1). Seventy-one arterial input functions were
manually selected from clinical exams at our institution and
scaled to fall into the range [0, 1] mmol/L. With these arterial
input functions, 511,200 concentration-time-curves where gen-
erated by randomly drawing tuples of (Kt, vp, ve). Two third
of the voxels were in the range [0, 0.6] min−1 × [0, 0.6] ×
[0.05, 0.6] representing brain tumor physiology [26], [27],
[35]. The remaining one third was Kt = 0, ve = 0.5, and
vp drawn at random from [0, 0.6] to mimic healthy tissue.
We generated a total of 1,533,600 concentration-time-curves
by using three noise realizations per patch with σ = 0.001.
Arterial input functions were randomly shifted with shifts
in the interval of [−4,+4] samples and scaled by a factor
in the interval [0.01, 1] before generation of concentration-
time-curves. This trains the network to be invariant to onset
times and to handle a range of SNR levels. Note that arterial
input functions are synchronized with the concentration-time-
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Fig. 1. The neural network consists of two stages: An input filter stage for Cp
(
t
)

and C
(
t
)
, and an encoder stage. The input filter stage comprises

three temporal filters for each Cp
(
t
)

and C
(
t
)
. Numbers in parentheses show filter length and stride. After concatenation the outputs of the filter

stage are encoded into 9 parameters for the posterior distribution through a sequence of 4 dense layers. Numbers count neurons of the dense
layers. Every layer in the network except the last is activated with LeakyReLU. The last has a sigmoid activation. The output of the last layer are
9 parameters for scale, rotation, and translation of the approximate joint posterior of Kt, vp, and ve.

curves for each voxel prior to the estimation, i.e., zero onset
delay, but enhancement onset may be different for each
concentration-time-curve.

D. Regularization and Training Procedure

At low contrast leakage, i.e., low values of Kt or low values
of ve, the data consistency loss tends to form two valleys in
an L-shaped form of which only one gives physiologically
realistic values for Kt and ve (an example of this can be seen
in Fig. 4a). To force the network to inflate the distribution
ellipsoid into the desired trench, we make use of the known
true labels for the training data and extend the cost function
in (6) to force the bounding box of the ellipsoid to encompass
the true parameter. Together with (8) this yields:

min
�

1

2σ 2 Eq

[
‖C − �(θ; Cp)‖2

2

]
− log det S(�)

+λ d(�, θtrue), (9)

where

d(�, θtrue) = inf
x∈ �

‖x − θtrue‖2 (10)

is the distance of the true parameter θtrue to the inscribed box
� of the ellipsoid parameterized by � .

We further regularize the the convolutional filters in the
input filter stage of the neural network to have unit l2-norm
and by total-variation penalty. Additionally, dropout layers
were added after every layer of the network in Fig. 1 and
the weights of the dense layers are regularized with l1-norm
penalty. We enforce axis-alignment of the posterior ellipsoid
in voxels mimicking healthy tissue because this improved
estimation accuracy in non-enhancing tissue at the lower end
of the SNR range.

To achieve fast training, we designed a 3-stage procedure:
First, the network is trained for 400 epochs with Adam opti-
mizer with standard settings [36] and exponential learning rate
decay. During this stage each element in the batch is weighted
by the inverse of its noise variance before averaging to yield
the cost function value. Second, the training is restarted with
Adam optimizer with standard settings and exponential rate
decay for 400 epochs, yet the elements of the batch are
weighted by the inverse of the noise standard deviation. Last,
the cost function weighting is removed and training continues
for 600 epochs.

IV. SIMULATION STUDY

A. Digital Reference Object

To establish a ground truth for parameter maps, we use
an anatomically and physiologically realistic digital reference
objects [37], which consists of a patch of glioblastoma tumor
(Fig. 2d and 2g). The parameter maps for the digital reference
object were generated using the identical pipeline outlined
in [37]. This entails fitting of the extended Tofts-Kety model
to clinical data and bi-linear interpolation of voxels that
were detected as fitting failures. Concentration-time-curves
are generated for tumor patches and 50 time frames with 5s
temporal resolution following the extended Tofts-Kety model
(1) with an arterial input function that is extracted from one
of our clinical scans that is not part of the training data.
When arterial input functions and concentration-time-curves
are scaled such that the arterial input functions fall in the range
[0, 1] mmol/L, noise measurements across all datasets used
in this study showed 2nd and 98th percentile of noise levels
in tumor concentration-time-curves to be at σ2prctile = 0.002
and σ98prctile = 0.05, respectively. Hence, we further add
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three different levels of additive-white-Gaussian noise with
σ = 0.002, 0.01, 0.05 to the concentration-time-curves.

B. Experiments

We repeat two experiments on the digital reference object
for each noise level. First, we compare the true parameter
maps to the mean of predicted posterior distribution by the
proposed approach as well as results of a regression with
a Gauss-Newton algorithm with 21 initializations for kep =
Kt/ve equally spaced in the interval [0, 0.1] min−1. We further
compare the standard deviations and observed Kt ranges of this
Monte-Carlo simulation with the predicted standard deviations
and Kt ranges in the tumor ROI. While the statistical meaning
of these two approaches to quantify uncertainty differs, previ-
ous work on tracer-kinetic modeling has shown the observed
range during Monte-Carlo simulations to be approximately
equal to the support of the posterior [18].

Second, we compare the predicted standard deviations and
parameter ranges in the tumor ROI with the standard devia-
tions and parameter ranges across different regression algo-
rithms, i.e., Levenberg-Marquardt algorithm [9], l-BFGS [21],
Gauss-Newton [38], [39], Nelder-Mead Simplex method [40],
and initializations which is known to be one of the sources
of error preventing reproducibility and comparability of DCE
MRI results [9], [41], [42]. We first specify 21 initializations
for kep = Kt/ve equally spaced in the interval [0, 0.1] min−1.
To generate different numbers of initializations, we then down-
sample this vector yielding 21, 10, 4, 2, and 1 initialization.
For this experiment the noise realization is fixed. Results of
these regressions are shown in the supplementary material in
Section SIII.

C. Results

Fig. 2 summarizes spatial maps of Kt for the different fitting
algorithms and different noise levels, as well as concentration-
time-curves for the voxels of highest Kt. Corresponding error
metrics are listed in Table. I. The proposed method demon-
strates lower maximum error in estimating Kt across the
full range of noise levels. The maximum Kt error of the
proposed method (red dot in the spatial maps in Fig. 2)
is always observed in the enhancing tumor tissue regions,
and for different true Kt values at different noise levels.
In terms of MSE, the proposed method is able to outperform
Gauss-Newton regression at low to medium noise levels,
yet exhibits increased MSE at the upper end of the noise
range.

Fig. 3 shows correlation plots of predicted standard devi-
ations in the tumor ROI with the standard deviation of the
reference method over 100 noise realizations, and the standard
deviation across different fitting routines. The same compari-
son is performed for predicted and observed parameter ranges,
i.e., the range from highest to lowest estimate of Kt in each
voxel.

In the low noise regime, the proposed method tends to
underestimate uncertainty in Kt due to noise and differences in
regression algorithms. At medium noise level corresponding
to the range from 20th to 80th percentile of noise levels,

TABLE I
ROOT MEAN SQUARE ERROR (RMSE) AND MAXIMUM ERROR OF KT

IN DIGITAL REFERENCE OBJECT EXPERIMENT FOR

DIFFERENT LEVELS OF NOISE σ

the proposed method is able to accurately predict variability
induced by different regression algorithms, while it over-
estimates the noise standard deviation. In the strong noise
regime, the proposed method overestimates the noise induced
uncertainty especially at voxels with high variability. With
regards to variability induced by regression algorithm there
is no observable trend.

Fig. 4 shows contour plots of the cost function for voxels
with highest Kt error in the predicted parameter map. The
highest error always happens at low enhancement, i.e., at low
values of Kt, when the cost function becomes non-convex.
The proposed method is able to predict a parameter range that
contains the true parameter, yet this range tends to be overly
conservative at medium to high noise.

V. LONGITUDINAL BRAIN DCE MRI STUDY

A. Data Acquisition

We illustrate application of the proposed method to the
longitudinal monitoring of brain tumors in humans. Retro-
spective data were obtained under a protocol approved by
our Institutional Review Board. All datasets were acquired
according to the clinical Brain MRI with Contrast protocol
at our institution, which includes DCE-MRI, and is routinely
performed in brain tumor patients. Data were anonymized
prior to analysis. Informed Consent was not required for this
study. For T1 mapping Variable-Flip-Angles scans with flip
angles FA = 2◦, 5◦, 10◦, 20◦, 25◦ were acquired and used
[43]. The DCE scan consisted of 50 time frames of 6 axial
slices with 5s temporal resolution acquired with two-fold
SENSE acceleration. Each slice has matrix size 186 × 256
with voxel dimension 1mm × 1mm × 7mm and was acquired
with FA = 15◦ and TE/TR = 2ms/6.3ms.

B. Tumor Cases in Dataset

The dataset encompasses three lesions in three subjects:
One meningioma with no treatment and no change over two
time points 382 days apart, a pituitary adenoma with radiation
treatment and no change over two time points 371 days
apart, and a metastasized melanoma treated with gamma knife
stereotactic radiosurgery, which increased in size over three
exams with intervals of 130 and 151 days and regressed at
the fourth 143 days later, based on standard bi-directional
assessment [44].
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Fig. 2. Comparison of true parameter maps of the digital reference object with reference method and proposed neural network approach (NN).
Each row corresponds to a different noise level σ = 0.002,0.01,0.05. Panel (b), (e), and (h) show the mean of reference method for Monte-Carlo
simulations (MC) with 100 noise realizations, and reference method and mean of posterior distribution predicted by proposed approach for one noise
realization. Parameter maps are in good agreement for low to medium noise levels. Position of highest Kt error for the proposed method is marked by
a red dot. Right most column: Concentration-time-curves (CTC) for the voxel with highest Kt. While the proposed parameter map differs substantially
from true and mean MC map at σ = 0.05, the predicted concentration-time-curve range and Monte-Carlo concentration-time-curverange are well
within the noise floor for the most enhancing voxel.

C. Arterial Input Function Extraction

Arterial Input Functions were extracted in a semi-automatic
manner. We first normalize the signal-intensity-curves to the
interval [0, 1]. We then use the following characteristic fea-
tures of arterial input functions to generate vessel masks:
difference of peak enhancement to final enhancement and
difference of peak to baseline signal larger than 0.2, time-to-
peak and full-width-at-80%-maximum less than half the entire
exam duration, respectively [45]–[47]. After erosion of each
vessel in the mask to reduce partial volume averaging at the
boundary of the vessel, we manually select one vessel per
patient such that the signal enhancements are approximately
consistent in scale across multiple exams. We assume a
constant vessel R10 = 0.63s−1 [48]. To account for scanner
gain calibration, we estimate proton density for the vessel
through a fit to baseline, and use the 95th percentile of the
proton density for all voxels in the vessel. After conversion
to concentration-time-curves using constant values for T1
relaxivity r1 = 4.5s−1 and Hematocrit Hct = 0.42 [49],

the potential arterial input functions with peak value within
top 80% of maximum are selected and averaged.

D. Reference Methods

All DCE exams were processed with conventional regres-
sion which consists of Gauss-Newton fitting of the extended
Tofts-Kety model in (1) [38], [39]. These regressions are
initialized with a previous Patlak fit for vp and Kt, i.e., a
regression of (1) with ve → ∞ [1], and 21 initializations
for kep = Kt/ve equally spaced in [0, 0.1] min−1.

To establish a diagnostic reference, all tumor cases were
assessed by bi-directional measurement of the lesion on axial
T1-weighted post-contrast images on a PACS workstation by
a neuroradiologist with eight years of experience [44].

E. Bolus Arrival Time Estimation

Bolus arrival time was estimated voxelwise as the time
point of steepest slope in a local linear approximation of
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Fig. 3. Comparison of predicted and observed uncertainty of Kt. Left
column: Predicted standard deviations of Kt by proposed method and
observed standard deviations across different noise realizations and
fitting methods. Right column: Predicted parameter ranges of Kt by
proposed method and observed parameter ranges induced by noise and
differences in fitting methods. Each row (a)–(c) corresponds to a different
noise level σ = 0.002,0.01, 0.05. Red dot marks voxel with highest Kt

error of proposed method.

the concentration-time-curve [50]. This bolus arrival time was
used to synchronize arterial input function and concentration-
time-curve in each voxel. To account for bolus arrival time
estimation inaccuracies and jitter, we further performed the
fitting three times with no and plus/minus one time shift of
the arterial input function about the estimated bolus arrival
time and report the best fit in terms of RMSE. This was done
for the reference method as well as for the proposed method.

F. Biomarkers for Treatment Response

Various metrics have been used as biomarkers in DCE-
MRI to assess response to treatment [51]. Many of those are
based on statistics that are derived from histograms of Kt

which has been shown by tumor growth models to be the
most informative parameter in tumor physiology [52]. Since
higher order statistics led to inconsistent trends regarding their
relationship to treatment response [53], [54], yet there appears
to be indication that Kt values decrease in case of positive
treatment response [55], we adapt the mean Kt in the tumor
ROI as biomarker [15].

Fig. 4. Analysis of error cases for different noise levels. Left column
shows true and noisy concentration-time-curves for the voxel with highest
Kt error of the proposed method. These are compared with the range
of concentrations observed during Monte-Carlo simulations (MC) and
the predicted range by the proposed method. Right column shows the
corresponding contour plots of the cost function for the Kt-ve plane.
The yellow dot indicates true parameters, blue dot the true minimum
of cost function, the red ellipse the predicted posterior distribution, and
the convex hull of estimated parameters during Monte-Carlo simulations
is drawn in green. Each row (a)–(c) corresponds to a different noise level
σ = 0.002, 0.01,0.05.

G. Data Analysis

1) Verification of Approximate Posterior Distributions: Fig. 5
shows a comparison of measured concentration-time-curves
and concentration-time-curves predicted by the reference
method and the proposed approach as well as contour plots
of sample cost function landscapes along the three hyper-
planes in the parameter space. Fig. 5a shows that discrep-
ancies between proposed and reference method can arise
in the low SNR regime due to different treatment of cost
function non-convexity. In Fig. 5b, the posterior ellipsoid
expands into the valleys of the cost function and leads to a
range of concentration-time-curves that cover the measured
concentration-time-curve tightly.

2) Longitudinal Assessment of Therapy Response: Fig. 6
illustrates an exemplary post-contrast magnitude image with
tumor ROI and vessel ROI for arterial input function extraction
for the meningioma case at the first visit, and compares Kt

maps generated with the reference method and the proposed
approach. The reference method is initialized multiple times,
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Fig. 5. Comparison of measured and fitted concentration time curves (CTC), and contour plots of respective cost function in all three hyperplanes
of the parameter space. Top row (a) corresponds to the red circle in Fig. 7a, bottom row (b) to Fig. 7d. Blue curves show the measured voxel CTC.
Red areas show cross sections of the neural network (NN) predicted posterior approximation which leads to CTCs inside the corresponding red
swath. The mean of the posterior ellipsoid gives rise to the green CTC. Yellow dot and curve indicate the reference value and corresponding CTC.
In the first case, the network predicts low enhancement due to low permeability Kt, while the reference method estimates low enhancement due to
small ve. In the second case the posterior ellipsoid is expanded into the cost function valley leading to predicting a large range of possible Kt values.

Fig. 6. Comparison of estimated Kt maps for different methods. Left-most
panel shows tumor ROI (red) and arterial input function vessel (green)
in post-contrast magnitude image. Middle and right-most panel compare
Kt maps for reference method with multiple initialization and Kt maps
estimated with the proposed method.

while the mean of the predicted parameter range is shown
for the proposed approach. Overall the parameter maps are
in good agreement at locations that are known to follow the
extended Tofts-Kety model (1), while discrepancies in the map
are visible around the skull and nasal cavities.

Fig. 7 shows predicted ranges of Kt for the first exams for
all three lesions in the respective tumor ROIs, and temporal
evolution of predicted ranges of Kt and average Kt in the tumor
ROIs with upper and lower bounds predicted by the proposed
approach.

Predicted parameter ranges are in good agreement with the
reference methods for all three lesions. For Lesion 1&3 the
reference method with multiple initializations shows larger
values of Kt for some voxels which stem from differences
in treatment of cost function non-convexity (Fig. 5a).

Temporal evolutions of Kt ranges in tumor ROIs
(Figs. 7b, 7e and 7h) are in excellent agreement with the
reference diagnoses.

For Lesion 1 and 3 the temporal evolution of the mean Kt

in the tumor ROI matches the diagnosed tumor development.
For Lesion 2, the difference in mean Kt would indicate a
progression of the tumor, yet endowing the measurement with
predicted ranges of uncertainty indicates the increase likely
to be due to measurement errors. Many cases of pituitary
adenoma (Lesion 2) can be a difficult type of tumor to
clinically measure and evaluate over time. Observing the
confidence intervals for all three lesions overlap substantially
suggests the mean Kt lacks in specificity as biomarker to detect
change in tumors.

3) Computation Time: Training time for the network was
approximately 20h on a Dual NVIDIA K40. The inference
of 6 slices of clinical data took approximately 10s on an
office laptop without GPU acceleration. This inference was
performed three times per dataset to correct for errors in the
bolus arrival estimation.

VI. DISCUSSION

We present a method to predict tracer-kinetic parameter
maps and estimate their uncertainty with low computation
time. Uncertainties are estimated for each voxel and are spe-
cific to patient, exam, and lesion. This is in strong contrast to
other lines of work in which global bounds on the uncertainty
of the measurement procedure are determined once prior to the
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Fig. 7. Evaluation of change in Kt in tumor ROI and mean Kt over multiple time points for three lesions. Top row (a)–(c): Meningioma with no
treatment and no change over time. Middle row (d)–(f): Pituitary adenoma with radiation treatment and no change over time. Bottom row (g)–(i):
Metastasized melanoma treated with gamma knife which increased in size until the third exam and regressed afterwards. Left column compares
predicted Kt ranges by the proposed method with results of Gauss-Newton regression. Overall good agreement of reference methods with predicted
parameter ranges. Middle column shows the evolution of Kt ranges over time to be in excellent agreement with the reference diagnoses. Right
column shows mean Kt of reference method in tumor ROI (bar) and upper and lower bounds on the mean Kt as predicted by the proposed approach.

methods’ deployment and average or maximum bounds are
applied to all subsequent measurements. Since higher-order
tracer-kinetic models in DCE-MRI are non-linear, the uncer-
tainty depends on the true parameter vector itself and global
bounds may over or underestimate the actual uncertainty at the
voxel level. Current DCE-MRI suffers from poor repeatability
and reproducibility; and we envision that local uncertainty
estimates help to sieve out and condense the reliable portion
of voxel measurements.

Clinical DCE-MRI suffers from poor reproducibility over-
all, and a substantial source is variability from the post-
processing [4], [41], [42], [56]. In Fig. 3 we attempted to
mimic the multi-center study by Huang et al. [41], and
determine if the observed poor reproducibility can in part be
explained as intrinsic to the non-linear tracer-kinetic modeling.

Hansen et al. [14] and Huang et al. [41] hypothesize voxels
with low contrast uptake, either because of low permeabil-
ity or because of small extra-vascular-extra-cellular space vol-
ume to leak into, to be one of the reasons for poor repeatability
and reproducibility. In light of cost function cross sections,
e.g., in Fig. 5a, we provide further evidence to this hypothesis.
Approximately flat regions in the cost function landscape leave
maximum-likelihood methods no chance but to surrender to
noise and dying gradients, and to report the value they reached
based on their initialization. Bayesian methods can overcome
this problem by leveraging prior information. Flatness of the
likelihood function causes priors to become more influential
which may lead to more consistent results [14] with decreased
variance in such regions. This might explain why Bayesian
methods were found to outperform non-Bayesian methods
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in tumor classification and grading tasks [10], in producing
more accurate tracer-kinetic parameter maps [10], [14], and in
achieving higher radiologist’s scores [8].

Regarding the vastly different ranges of tracer-kinetic para-
meters for different diseases [26] it is however likely that post-
processing tools including such priors need to be tailored to a
specific disease and tumor type [14], and possibly end up being
site specific too; which would add to poor reproducibility
across sites. At least for tumors, it was found that the same
priors could be reused for breast [15], prostate, and head and
neck tumors [10]; whereas another brain tumor research team
found priors different in parameter settings (for permeability)
and functional form (for volume fractions) [8], [14].

Priors are typically designed from expert knowledge and
intuition [14]. For DCE-MRI such knowledge base can only
come from experience with existing post-processing tools due
to lack of gold standard reference methods. Hence, these priors
likely inherent problems arising due to poor repeatability and
reproducibility at which point the problem becomes circular.
For this reason we propose to use uninformative, universal,
uniform priors. In combination with a variational approach for
posterior approximation and a uniform approximate posterior
distribution we arrive a problem formulation that (ideally)
allows to capture the full support of tracer-kinetic parameters
that could potentially explain the data while relying only on
data consistency.

We show that the proposed method is able to capture and
predict the entailing range of parameter estimates. A compar-
ison to standard deviations induced by noise, however, reveals
that the proposed methods tends to overestimate the observed
standard deviation in the medium to high noise regime. This is
likely due to a mismatch between the true posterior distribution
and the assumed uniform posterior distribution. The latter is
able to predict the correct support, yet does not capture the
relative frequencies of the estimated values accurately. This
would explain why the effect is less pronounced if uncertainty
is measured in terms of range of posterior support. A remedy
to this could be the use of alternative approximations such as
Normal or Log-Normal assumptions. We anticipate that the
same network architecture could be used for these alternative
distributions in which case the predicted ellipsoid would be
the covariance ellipsoid. Infinite support and fixed zero-value
of the probability density at zero, respectively, would require
proper treatment of potential (non-physiological) negative
tracer-kinetic parameters and separate treatment of healthy
tissue.

While Bayesian methods may certainly provide increased
performance seen in Table. I, Fig. 2, and in [8], [10], [14], [15],
many practical implementations come at the cost of increased
computation time which might prohibit their use in clinical
practice. Schmid et al. [15] report 8h on a conventional CPU
and similarly sized dataset, Zhu et al. [17] report 23.5h on a
dataset less than half the size, and Dikaios et al. [16] report
17h for sampling based Markov-Chain-Monte-Carlo methods
which are known to be computationally demanding [57].
Tietze et al. [8] mention long processing time for curve
fitting as one of the obstacles preventing clinical deployment,
and causing curve fitting only on concentration-time-curves

averaged across the tumor ROIs to still be in wide-spread
use [10], [17]. For this reason we propose to use a neural
network which allows Bayesian regression for a whole clinical
DCE exam in less than 30s on four CPUs.

Computing voxel-wise variance estimates in addition to
parameter estimates raises the question of how to incorporate
the added information into clinical decision making and patient
management. There are many possibilities that require further
investigation in collaboration with patient management teams.
The spectrum of possibilities includes simply displaying para-
meter and uncertainty maps side-by-side, to discarding high
variance voxels, or reporting a single representative biomarker
and its error bound. In Fig. 7 we illustrate two possible ways
of data distillation and representation. While the temporal
evolution of predicted Kt ranges matches the reference diag-
nosis accurately, further compression of the data into a single
biomarker was not successful in providing desired specificity.

Although care must be taken because of differences in
the tumor type under investigation, when comparing similar
mean Kt, this relatively wide spread of mean Kt parameter in
the tumor ROI is also observed by Huang et al. [41] where
the mean Kt in the tumor ROI was computed with different
software tools at different sites. Because baseline T10 and
arterial input function were fixed in [41], the variation in
mean Kt observed across different regression tools could be
intrinsic to the assumed tracer-kinetic modeling. Hence, this
initial study could hint toward reasons for current challenges
in the development of reliable biomarkers [35], [51]. Yet,
further investigation on larger patient cohorts is crucial to
better determine how uncertainty estimates can help to inform
clinical decision making.

The proposed network performed well on the simulation
test data and clinical data and in comparison with non-
Bayesian regression, which is in line with other works on
this topic [8], [10], [14], [15]. However, there were some
voxel cases in the clinical dataset for which the predicted
parameter differed substantially from the reference method
(Fig. 7). A closer look in Fig. 5a reveals this to be due to high
noise and non-convexity of the cost function which could make
multiple settings of parameters equally plausible. The effects
of this problem have been noticed in previous work [14], [41].
Although clinical consequences remain unclear [14], [41],
the proposed method in (9) presents a way of addressing the
problem by consistently enforcing the physiologically realistic
solution through memorization in the neural network weights.

In this work we used artificial training concentration-time-
curves generated with arterial input functions extracted from
real clinical DCE-MRI exam. In principle the proposed method
is not limited to be trained with artificial data but could
also be trained with concentration-time-curves from clinical
exams. One obstacle is data balance which is known to be
important for training neural networks. For artificial data
such balance can readily be achieved by choice of data
generation. For clinical data, the frequency of occurrence
of tracer-kinetic parameters follows their natural distribution.
This gives a highly skewed dataset in which high values
of Kt for example appear less often. Hence, the network
observes such values less often during training, which might
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cause degradation in performance for such parameter values.
Although less frequent, such high enhancement regions are
known to be important for diagnosis and accuracy should not
be compromised. Successful design of training data consisting
of real clinical concentration-time-curves is subject to future
research.

The proposed method could be applied to other quantita-
tive imaging techniques such as Dynamic Position Emission
Tomography (PET) [17], [58], [59], Dynamic-Susceptibility-
Contrast (DSC) MRI [60], [61], and Arterial Spin Labeled
(ASL) MRI [19]. The proposed method is also not lim-
ited to Brain nor the deployed extended Tofts-Kety model.
Other possible areas of application include Prostate, Breast,
Liver, and Heart; and include onset time and delay estimat-
ion [6], [10], [14] as well as higher-order tracer kinetic
models [1], which share the non-strictly-convex characteris-
tics of the cost function landscape [6], [14], [25]. Model
selection itself is one of the prominent problems in DCE-
MRI [62]. An extension of the proposed method would be to
incorporate model selection into the estimation of uncertainty
via the introduction of hyperpriors and automatic relevance
determination [63].
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