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Abstract

Purpose

To determine the impact of imaging parameters on the temporal signal-to-noise ratio

(TSNR) of quantitative cardiac magnetic resonance (MR) in humans, and to determine

applicability of the physiological noise covariance (PNC) model for physiological noise (PN).

Methods

We conducted MRI experiments in four healthy volunteers, and obtained series of short-

axis cardiac images acquired with snapshot balanced steady-state free precession

(bSSFP) and snapshot gradient echo (GRE) using a broad range of spatial resolutions and

parallel imaging acceleration factors commonly used in quantitative cardiac MR. We mea-

sured regional SNR and TSNR in these datasets and fit the measurements to the PNC

model for PN, which assumes that PN scales with signal strength.

Results

The relationship between SNR and TSNR in human cardiac MR without contrast prepara-

tion was well modeled by the PNC model. SNR consistently decreased as the spatial resolu-

tion (matrix size) and acceleration factor (R) increased for both GRE and bSSFP imaging.

TSNR varied linearly with SNR using GRE imaging, when SNR was low (SNR < 20), and

approached an asymptotic limit using bSSFP imaging, when SNR was high (SNR > 40).

Conclusions

The PNC model can be used to guide the choice of matrix size and acceleration factor to

optimize TSNR in stable contrast cardiac MR, such as T2-prepared Blood-Oxygen-Level-

Dependent (BOLD) and several variants of Arterial Spin Labeled (ASL) cardiac MR.
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Introduction

Quantitative cardiac magnetic resonance (MR) has shown clinical value in a wide array of

applications, including T1, T2, and ECV mapping as well as first-pass and non-contrast perfu-

sion imaging. Quantitative cardiac MR maps are formed from multiple images, which make

them susceptible to errors caused by signal fluctuations of physiological origin, such as cardiac

or respiratory motion. This is known as physiological noise (PN) and impacts the temporal sig-

nal-to-noise (TSNR) ratio which ultimately determines measurement variability.

Recent advances in cardiac MR have enabled clinically feasible quantitative mapping of

magnetic relaxation properties and perfusion of the myocardium [1]. T1 and ECV mapping

can assess diffuse myocardial fibrosis and infiltration [2–4] and can measure extracellular vol-

ume when acquired with contrast [5,6]. Inflammation and edema in the heart can be detected

with T2 mapping [7] while T2� is sensitive to iron induced field inhomogeneity in hemochro-

matosis [8] and hemorrhage [9]. Quantitative myocardial perfusion imaging performed using

either first-pass cardiac MR [10], arterial spin labeling (ASL) [11], or blood oxygen level

dependent (BOLD) [12] has been shown to detect regions of ischemia to evaluate coronary

artery disease severity. These quantitative maps are all formed by imaging the myocardium

multiple times with either contrast agents or different magnetization preparations to vary the

sensitivity of each image to the parameter of interest. These preparations produce changes in

the signal intensity of the acquired images, which are fit to models of the underlying physiol-

ogy or relaxation parameter to generate a quantitative map.

Unexpected signal changes that are not from the designed preparations will cause errors in

the parameter estimates. These errors arise from thermal noise as well as physiological fluctua-

tions from cardiac, respiratory, and hemodynamic motion. Thermal noise is well understood

and is modeled as an independent additive bivariate Gaussian process. It can be easily measured

from noise-only data (acquired without RF excitation) or from a manually-selected noise-only

region within an image. In contrast, the physiological noise distribution is largely unknown and

cannot be directly measured. Physiological noise contributes to the temporal standard deviation

of an image series, and can become a dominant contributor to measurement variability. In

quantitative imaging, temporal signal-to-noise ratio (TSNR) is measured as the mean signal

intensity within a region-of-interest (ROI) divided by its temporal standard deviation.

Triantafyllou et. al. [13] demonstrated that in the brain image acquisition parameters,

including spatial resolution, parallel imaging acceleration factor, and flip angle, altered the

TSNR. They were also able to experimentally confirm that physiological noise increases pro-

portionally with the signal strength [14]. This is problematic because a simple increase of signal

strength through higher field or denser receiver arrays may not translate to improvements in

TSNR if physiological noise is dominant. In this case, efforts should be made to increase spatial

resolution or speed acquisition through parallel imaging. Northrup et. al. [15] observed this

phenomenon in ASL cardiac MR, which exhibited similar TSNR at 1.5T and 3.0T, despite the

SNR advantage at 3.0T. Do et. al. [16] used parallel imaging to speed up the acquisition of ASL

cardiac MR and observed an increase in TSNR despite a decrease in SNR. TSNR can be

increased by using parallel imaging to shorten the image acquisition window. This has been

found to reduce physiological noise, likely due to cardiac and respiratory motion [16].

In this study, we measure the SNR and TSNR of cardiac mid short-axis image series under

different spatial resolutions and parallel imaging acceleration factors and assess the ratio between

physiological and thermal noise. We study snapshot bSSFP and GRE acquisitions because they

are the most commonly used acquisition schemes for cardiac MR T1, T2, and ECV mapping and

for myocardial perfusion imaging. While the results of this work are specific to our MRI appara-

tus, receiver coil, and pulse sequence, it is simple to reproduce and need only be performed once.

Analysis of physiological noise in quantitative cardiac magnetic resonance
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To the best of our knowledge, this is the first study that experimentally examines how the choice

of imaging parameters affects TSNR and σP for quantitative cardiac MR.

Materials and methods

Noise analysis

Our analysis of physiological noise and TSNR follows the work of Triantafyllou et. al. [13] for

multi-channel coil arrays in fMRI image series in the brain. The total noise, σ in a cardiac MR

image series is modeled as the independent sum of thermal noise, σt and physiological noise, σp.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t þ s

2
p

q
ð1Þ

Physiological noise is described by the Krüger and Glover model (KG) [14] to scale proportion-

ally by a constant, λ, with the MR signal level, S, such that σp = λS. According to this model for

noise, TSNR can be derived from image SNR as follows:

TSNR ¼
S
s
¼

SNR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ ðl � SNRÞ2Þ
q ð2Þ

Recently, Triantafyllou et. al. proposed a new physiological noise covariance (PNC) model

that captures coil to coil noise correlations from physiological fluctuations by splitting the

noise covariance matrix into a thermal and physiological component [17]. This model relaxes

the assumption that PN must scale with the signal level and reduces to the KG model when the

physiological noise covariance matrix scales with the signal level. The correlations of physio-

logical noise sources that are not signal level dependent are described by an additional parame-

ter, α, to generalize the model such that

TSNR ¼
SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ aþ ðl � SNRÞ2
q ð3Þ

In practice, both λ and α are unknown and TSNR is directly measured by dividing the mean

signal intensity by its temporal standard deviation. However, an important result of this model

is that TSNR reaches an asymptotic limit of 1/λ when SNR becomes large. This implies that

attempts to increase TSNR by increasing SNR will fail if SNR is already high.

From measurements of SNR and TSNR, the ratio of physiological noise to thermal noise

can be measured as follows:

sp

st
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNR
TSNR

� �2

� ð1þ aÞ

s

ð4Þ

This noise ratio determines whether an image series is thermal noise or physiological noise

dominant. When images are thermal noise dominant, improvements in TSNR can be achieved

by increasing the signal, through higher field strength of denser surface coils. However, when

images are physiological noise dominant, improvements in SNR have negligible impact on

TSNR. Instead, SNR can be traded for other gains, such as in spatial resolution or parallel

imaging acceleration factor up until the physiological noise is comparable to thermal noise.

Experimental methods

Images were acquired on a 3T GE Signa Excite HD with an 8-channel cardiac receiver array in

4 healthy volunteers. Written informed consent was acquired from all volunteers using a

Analysis of physiological noise in quantitative cardiac magnetic resonance
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protocol specifically approved by the University of Southern California institutional review

board. Images were acquired using snapshot bSSFP and GRE. All images were acquired during

mid-diastole at a single mid short-axis slice. For each unique set of acquisition parameters,

twenty images were acquired. Images were acquired with a 1 second breath hold with a 3 sec-

ond wait between acquisitions to allow the magnetization to fully recover. A cardiac cinema/

video [CINE] scout scan was acquired in each subject to determine the exact timing of mid-

diastole relative to the ECG R-wave. Noise only images without RF were also acquired to calcu-

late the thermal noise and coil noise covariance matrix in each subject.

In each subject, data were acquired at various matrix sizes (192×96, 192×128, 192×192) and

accelerated (1, 1.33, 1.6, 2) by GRAPPA [18] and partial Fourier imaging. Other imaging

parameters were fixed throughout the experiment, which include TR/TE of 3.6/1.8 ms, FA of

500/50 for bSSFP and GRE respectively, BW of ±125 kHz, and slice thickness of 10 mm. This

led to a total of 24 different imaging settings (3 matrix sizes, 4 acceleration factors, 2 imaging

sequences). Differences in the size of the volunteers led to different choices of FOV and spatial

resolution. Specific imaging parameters are summarized in Table 1, and inter-subject varia-

tions in the FOV and spatial resolutions are summarized in Table 2.

Image reconstruction and data analysis

Image were reconstructed offline using software written in Matlab (Mathworks Inc. Natick,

MA, USA). Partial Fourier image reconstruction was carried out using homodyne reconstruc-

tion with a linear ramp weighting while GRAPPA reconstruction was performed using a cus-

tom implementation. Images were coil combined using an optimal B1 weighted combination

Table 1. Acquisition parameters used for acquiring cardiac image series at various resolutions and acceleration factors.

Reconstructed Matrix Acquired Matrix Partial Fourier Acceleration Imaging Window (ms)

192 ×96 192 × 96 1 1 336

192 × 72 6/8 1.33 252

192 × 60 1 1.6 210

192 × 48 6/8 2 168

192 ×128 192 × 128 1 1 448

192 × 96 6/8 1.33 336

192 × 76 1 1.6 266

192 × 60 6/8 2 210

192 ×192 192 × 192 1 1 672�

192 × 144 6/8 1.33 504�

192 × 108 1 1.6 378

192 × 84 6/8 2 294

�Imaging settings at 192x192 and 192x144 have long imaging windows that occupy up to half of the cardiac cycle.

https://doi.org/10.1371/journal.pone.0214566.t001

Table 2. Variations in FOV and spatial resolution in the different subjects. Resolution is reported for matrix sizes

of 192 x (96, 128, 192).

Subject FOV (mm2) Resolution (mm)

1 320 1.67 × (3.33, 2.50, 1.67)

2 360 1.88 × (3.75, 2.81, 1.88)

3 360 1.88 × (3.75, 2.81, 1.88)

4 320 1.67 × (3.33, 2.50, 1.67)

https://doi.org/10.1371/journal.pone.0214566.t002
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[19] and aligned with non-rigid motion correction using advanced normalization tools

(ANTs) [20].

SNR maps were calculated for each image using the “pseudo-replica” method described by Rob-

son et al. [21] For each image, correctly scaled and correlated synthetic noise is added to acquired

k-space data before reconstruction. This is repeated multiple times, each with a different instantia-

tion of synthetic noise, to generate an image stack. Under the assumption that the reconstruction

process acts independently on the signal and the noise, SNR can be calculated as the ratio of the

image reconstructed without noise addition to the standard deviation of the image stack. In con-

trast, TSNR was measured from the actual multiple replicas that were acquired. It is calculated as

the mean intensity of a pixel or a manually drawn ROI of the left ventricular myocardium divided

by the temporal standard deviation. The SNR and TSNR for each of the 24 individual imaging

parameters were averaged across the four subjects, and fit to the PNC model of Eq 3 using a non-

linear least squares algorithm provided by Matlab to estimate the physiological noise scaling param-

eter, λ and physiological coil covariance parameter, α. The noise ratio from Eq 4 was subsequently

calculated from SNR, TSNR and α. Regional analysis of the lateral and septal myocardium used

ROIs corresponding to segments 2 and 3 and segments 5 and 6 of the standard AHA model [22].

Results

Fig 1 shows a representative image, SNR, TSNR, and noise ratio map from one volunteer with

an acceleration factor of 1 using a 192×192 matrix. SNR is always greater than or equal to

TSNR. The noise ratio map is low in areas with little movement such as the musculature in the

back and highest in areas with large fluctuations in signal intensity, such as blood vessels.

Fig 2A shows TSNR as a function of SNR in the left ventricular myocardium. Each point

represents an average across subjects while the error bars represent the standard deviation

within the ROI averaged across subjects. Red solid points represent bSSFP acquisitions while

blue outlined points represent GRE acquisitions. The points were fit to Eq 3, shown as the

solid black line, with a physiological noise scale factor, λ, of 0.0197. The lower and upper 95%

confidence interval of λ was 0.0173 and 0.0221 and are plotted with their corresponding dotted

black lines. The physiological noise covariance factor, α, is 0.817 with 95% confidence interval

of 0.383, 1.252. The vertical dashed red line corresponds to the SNR in which the noise ratio is

unity and has a value of 50.8 (1/λ). The noise ratio is less than unity when left of the line, and

greater than unity when right of the line. The horizontal dashed red line corresponds to the

asymptotic value for TSNR which also has a value of 50.8 (1/λ).

The data were also analyzed within the lateral and septal walls, which are shown in Fig 2C

and Fig 2D respectively. Septal and lateral segments are defined by the AHA 17-segment

model [22] and are shown in Fig 2B. λ is statistically different between the lateral and septal

wall. It is higher within the lateral walls at a value of 0.0242 with lower and upper 95% confi-

dence interval of 0.0219 and 0.0265 is lower in the septum at a value of 0.0162 with a confi-

dence interval of 0.0141 and0.0183. This leads to an asymptotic value for TSNR of 41.4 and

61.7 for the lateral wall and septum respectively. α within the lateral and septal walls are not

significantly different and are 0.5581 with 95% confidence of 0.2023 to 0.9140 and 0.7583 with

95% confidence of 0.3973 to 1.1193 respectively.

Fig 3 contains plots of average SNR, TSNR, and σp/σt within the left ventricular myocar-

dium ROI as a function of the image matrix size and acceleration factor. SNR consistently

decreased as the spatial resolution (matrix size) and acceleration factor (R) increased for both

GRE and bSSFP imaging. In GRE imaging, TSNR decreased as the spatial resolution and accel-

eration factor increased. The noise ratio was consistently lower than unity, represented by the

dashed red line, for all matrix sizes and acceleration factors. In contrast, TSNR only slightly
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decreased as the matrix size increased in bSSFP imaging, but remained constant when acceler-

ation factor increased. The noise ratio in bSSFP imaging was consistently above unity and only

decreased to approach unity at the largest matrix size and acceleration factor.

Discussion

In this work, we investigated how changes in spatial resolution and parallel imaging accelera-

tion factor affect SNR, TSNR, and the noise ratio for quantitative cardiac MR using snapshot

Fig 1. Representative image, SNR, TSNR, and σP/σT maps from a healthy volunteer. Images were acquired with a matrix size of 192x192, R = 1, Resolution =

1.67x1.67mm2. The SNR, TSNR, and σP/σT ratio within the left ventricular myocardium ROI (white dashed line) was 51.3± 9.8, 30.5±10.2, and 1.49 ± 0.56

respectively. The noise ratio map is lowest in areas with little movement, such as the muscles of the back and highest in areas with large fluctuations in signal

intensity such as blood vessels. In a static phantom and stable imaging environment, TSNR = SNR. In vivo, TSNR� SNR due to additional sources of σP. The σP/σT
ratio determines whether σP or σT is the dominant source of noise. When σP is dominant (σP/σT>> 1), SNR gains will not improve TSNR.

https://doi.org/10.1371/journal.pone.0214566.g001
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Fig 2. Plots of temporal signal-to-noise ratio (TSNR) versus signal-to-noise ratio (SNR). Separate plots are for A) all LV myocardium, C) septal myocardium and D)

lateral myocardium, from mid-short axis slices. Septal and lateral segments are illustrated in B). Each point represents an average over four subjects while the error bars

represent the standard deviation within the ROI averaged over four subjects. bSSFP acquisitions are shown in solid red while GRE acquisitions are shown in outlined

blue. The solid black line represents the fit to the PNC model along with the lower and upper 95% confidence interval shown in dotted black. The dashed black line

indicates the line of unity. Vertical and horizontal dashed red lines represent when the noise ratio is equal to one and the asymptotic limit of TSNR respectively. Both

occur at 1/λ. At low SNR, TSNR varies linearly with SNR while at high SNR, TSNR approaches an asymptotic limit. The lateral myocardium also exhibited higher

physiological noise (λ = 0.0242, α = 0.5581) and hence lower asymptotic TSNR than the septum (λ = 0.0162,α = 0.7583).

https://doi.org/10.1371/journal.pone.0214566.g002
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GRE and bSSFP imaging. We found that when spatial resolution is made coarser and accelera-

tion factor is reduced, SNR consistently increases while TSNR faces diminishing returns. In

particular, we observed that TSNR varies linearly with SNR using GRE imaging (SNR< 20)
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Fig 3. Comparison of SNR, TSNR, and the σp/σt for several image matrix sizes and acceleration factors. A) GRE and B) bSSFP. Matrix sizes of 192×96, 192×128,

and 192×192 are shown in blue, green, and yellow respectively. As expected, SNR decreases with increasing matrix size and higher acceleration factors. In GRE, TSNR

follows a similar trend and the noise ratio is< 1 for all imaging settings. In bSSFP, TSNR remains relatively constant and the noise ratio is�1 at low acceleration factors

and approaches 1 only at higher accelerations and larger matrix sizes.

https://doi.org/10.1371/journal.pone.0214566.g003
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and approaches an asymptotic limit using bSSFP imaging (SNR> 40). This makes the noise

ratio (σp/σt) thermal noise dominant (<1) for GRE and physiological noise dominant (>1) for

bSSFP in all but the largest of matrix sizes and acceleration factors (192× 192, R = 2). These

results are predicted by the PNC model; physiological noise scales with signal strength and

above a certain threshold, further improvements in SNR do not necessarily translate to

improvements in TSNR.

The relationship between SNR and TSNR, as descried by the PNC model, can be catego-

rized into three regimes—the linear, transition, and asymptotic regime. The linear regime is

defined as the range of SNR where the noise ratio is less than unity while the asymptotic

regime is defined as the range of SNR where TSNR is greater than 95% of its asymptotic value.

The transition regime lies between the two. One should avoid imaging in the linear regime

because TSNR can always be improved by increasing SNR. Similarly, one should avoid imag-

ing in the asymptotic regime because SNR can be sacrificed with little to no loss in TSNR,

which will yield improvements in spatial resolution or scan time. Quantitative cardiac MR pro-

tocols should be performed in the transition regime, and the experiments described in this

manuscript can inform appropriate parameter selection.

In the original KG model, physiological noise can be interpreted as a modulation of signal

intensity within a voxel caused by complex physiological processes, such as pulsatile blood

flow or the effect of deoxyhemoglobin in the BOLD effect. These effects are local and occur

within the voxel. In contrast, with bulk motion, tissue signal intensities are modulated as they

move through the spatial gradient of the receiver sensitivity profile over time and can no lon-

ger be accounted for by the KG model. In cardiac imaging, the major sources of PN are bulk

motion during the cardiac cycle and respiration. The PNC model relaxes the assumption that

PN must scale with the signal level and can be used to model the major sources of PN in CMR.

While the PNC model was originally developed for long-TR EPI imaging used in BOLD fMRI,

we found that it is applicable to snapshot GRE and bSSFP often used for cardiac imaging.

Snapshot imaging is performed in a transient state and is designed to capture the longitudinal

magnetization prior to imaging.

Previous studies have only investigated the relationship between SNR and TSNR for func-

tional MRI of the brain [13,14]. In those studies, reported values for the physiological noise

scaling parameter, λ, (0.009) are significantly lower than values we report for the heart

(0.0197). This is likely due to cardiac and respiratory motion found in the heart that are absent

in the brain. We also reported regional variations in SNR and TSNR and found that λ is 1.49

times larger in the lateral wall (0.0242) than in the septum (0.0162).

One concern about the results of this study is the precision of the TSNR estimate, which is

dependent on the accuracy of the noise standard deviation. The noise standard deviation is

determined by the number of images acquired and pixels within the ROI. Using a Monte

Carlo simulation for 20 images with 150 pixels within the left ventricular myocardium, 50 pix-

els for regional analysis, and individual pixel-wise analysis, the relative error of the TSNR mea-

surement was 1.6%, 2.1%, and 12.97% respectively. This is below the inter-subject variation for

SNR and TSNR and does not alter the conclusions of the study. The large standard deviation

in measured SNR and TSNR is reflective of both spatial variability due to B1 inhomogeneity

within the myocardium and inter-subject variation of SNR due to differences in body habitus

and chest wall thickness. Sung et. al. found that flip angles within the myocardium can vary as

much as 53% within an individual subject [23]. In this work, the standard deviation is domi-

nated by normal inter-subject variability. It is possible to lower the measured standard devia-

tions by carefully choosing subjects with similar body habitus, cardiovascular performance at

rest, and controlling for confounds such as coffee intake.
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Another concern in our analysis is the existence of physiological noise within an imaging

window, which may be more pronounced in longer acquisition windows (e.g. 672 ms for a

192×192 matrix size without acceleration). TSNR can only be measured between images and

all noise within an image is assumed to come from thermal noise. Therefore, SNR may be

underestimated and the SNR-TSNR curve may be shifted to the right. Rapid acquisition

schemes such as EPI or spiral imaging may be evaluated to observe the degree of this bias. We

hypothesize that these acquisition schemes, with their shorter imaging window, may even lie

on a completely different SNR-TSNR curve with a lower λ and higher asymptotic TSNR.

A natural follow-up to this study would be to investigate whether the relationship between

SNR, TSNR, and the noise ratio changes in systolic imaging, during exercise or pharmacologic

stress, or with different cardiac pathologies. For instance, arrhythmia and stress may cause

more cardiac motion during imaging and decrease TSNR while heart failure and post-acute

myocardial infarct scar may reduce cardiac motion and increase TSNR. These studies may be

difficult to perform in humans, but could potentially be examined in a large animal model,

where respiration can be controlled and many images can be acquired. The drawback is that

animals are typically anesthetized and may have a different stress response than humans. Nev-

ertheless, it would be insightful to determine whether image acquisitions parameters can be

optimized for cardiac phase, stress, or pathology.

Another limitation of this study is that we only considered equilibrium contrast. Quantita-

tive cardiac MR can involve large variations in contrast due to magnetization preparation and/

or passage of contrast agents. A single experiment (i.e. T1 mapping or T2 mapping) can have

images with a broad range of SNR and regional contrast. While changes in image acquisition

parameters are expected to cause shifts along the SNR vs. TSNR curve, changes in contrast or

contrast preparation parameters could cause shifts of the entire curve. The findings of this

study are therefore only directly applicable to quantitative cardiac MR techniques that utilize

snapshot imaging and have stable contrast between images. This includes T2-prepared BOLD

cardiac MR [24] and ASL cardiac MR using PICORE, EPISTAR, or steady-pulsed labeling

[25].

In summary, we demonstrated that the SNR and TSNR of equilibrium snapshot cardiac

MR images can be parametrized by the PNC model and varies with different image acquisition

parameters, including spatial resolution and acceleration factor. However, we have also identi-

fied additional imaging parameters that must be considered for cardiac imaging, the precise

timing and duration of imaging within the RR interval. Future work needs to be done to char-

acterize these different regimes for systolic imaging, stress imaging, and in different cardiac

pathologies.
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