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Anisotropic Field-of-View Support for Golden Angle
Radial Imaging

Ziyue Wu,1,2* Fei Han,3 Peng Hu,3 and Krishna S. Nayak2

Purpose: To provide anisotropic field-of-view (FOV) support
for golden angle radial imaging.

Theory and Methods: In radial imaging, uniform spoke den-
sity leads to a circular FOV, which is excessive for objects
with anisotropic dimensions. Larson et al previously showed

that the angular k-space spoke density can be determined by
the desired anisotropic FOV. We show that conventional

golden angle sampling can be deployed in an angle-
normalized space and transformed back to k-space such that
the desired nonuniform spoke density is preserved for arbitrary

temporal window length. Elliptical FOVs were used to illustrate
this generalized mapping approach. Point-spread-function and
spoke density analysis was performed. Phantom and in vivo

cardiac images were acquired.
Results: Simulations, phantom, and in vivo experiments con-

firmed that the proposed method is able to achieve aniso-
tropic FOV while still maintaining the benefits of golden angle
sampling. This approach requires 50% less spokes for ellipti-

cal FOV with major-to-minor-axis ratio of 1:0.3, when com-
pared with isotropic FOV with the same undersampling factor.

Conclusion: We demonstrate a simple method for applying
golden angle view ordering to anisotropic FOV radial imaging.
This can reduce imaging time for objects with anisotropic

dimensions while still allowing arbitrary temporal window
selection. Magn Reson Med 76:229–236, 2016. VC 2015 Wiley
Periodicals, Inc.
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INTRODUCTION

Radial sampling techniques have been used extensively
in medical imaging since the invention of computed
tomography (CT) (1). It was also used in the first MRI
experiment (2) and remains popular in the MRI commu-
nity. Radial MRI supports ultra-short echo times (3) and
is known to be robust to flow (4) and motion (5). It also

provides a diffuse aliasing pattern (5) and, therefore, is
less sensitive to undersampling. Although Cartesian sam-
pling dominates most clinical MRI today, radial trajecto-
ries are still preferred in many applications, including
dynamic imaging, due to these favorable properties.

Standard implementations of radial imaging do not sup-
port anisotropic field-of-view (FOV), which leads to sam-
pling redundancy and unnecessary scan time when the
object being imaged has anisotropic in-plane dimensions
(abdomen, spine, etc.). This problem was addressed by
Larson et al, who proposed a method of designing fully
sampled radial trajectories with variable densities
matched to the anisotropic FOV (6). However, this method
alone cannot be applied with golden angle (GA) view
ordering, which was first applied in MRI by Winkelmann
et al (7), and has become an important acquisition scheme
for dynamic imaging applications. GA sampling has the
important feature of nearly uniform radial spoke distribu-
tion for any arbitrary temporal window. The temporal
window size, therefore, can be retrospectively selected.
Prior knowledge of the expected motion dynamics and
requisite temporal resolution has become less critical.

Because radial MRI is particularly useful in dynamic
applications, the work of this study is to extend Larson’s
method and provide anisotropic FOV support for GA
radial imaging. The conventional GA sampling is modi-
fied to follow the desired spoke density for any predeter-
mined FOV shape instead of a uniform distribution,
which provides a circular FOV. We used elliptical FOVs
for demonstration; however, the approach is compatible
with any arbitrary convex FOV.

THEORY

In radial MRI, when a convex FOV is desired, it can be
expressed as a function of the azimuthal angle FOVðuÞ.
Because the density of spokes f ðuÞ / 1

DuðuÞ � kmaxðuÞFOV
ðuþ p=2Þ (6), an efficient GA sampling scheme should
maintain f ðuÞ in physical k-space corresponding to the
given FOV shape, for any arbitrary temporal window.
Here, f ðuÞ is in general not constant, and can be deter-
mined by the FOV shape. Now consider an angle-
normalized space where the angles u0 2 ½0;1Þ. In this
space, the angle of the ith spoke u0½i� is sampled by the
conventional GA scheme:

u0½i� ¼ mod
2i

1þ
ffiffiffi
5
p ; 1

� �
; i ¼ 1;2;3 . . . [1]

This leads to an approximately uniform distribution of
the spokes in the u0 space, i.e. f ðu0Þ � 1, and, therefore,
nearly isotropic FOV for arbitrary temporal windows.
The problem now becomes to find a parametric mapping
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u½i� ¼ Tfu0½i�g such that f ðTfu0gÞ ¼ f ðuÞ. Tfu0½i�g can then
be used to transform u0 back to the physical k-space to
get the angle in real acquisition u½i�. Based on the inverse
transform sampling (8): if u0 is uniformly distributed
on [0,1), then u ¼ F�1ðu0Þ follows distribution F, where
F is the cumulative distribution function of u. Therefore,
Tfu0½i�g is exactly the inverse cumulative distribution
function: Tfu0½i�g ¼ F�1ðu0½i�Þ. Tf�g is in general difficult
to calculate analytically (see the Appendix), and may be
solved numerically by approximating F�1ðu0Þ with a
function easier to compute.

METHODS

Without loss of generality, we consider an elliptical FOV

with isotropic spatial resolution as an example. Because

F�1ðu0Þ is very complex for elliptical FOVs, a practical

interpolation approach is used here without explicitly

calculating F�1ðu0Þ. This interpolation approach can also

be extended to any convex FOV shape. As illustrated in

Figure 1a, first, the fully sampled radial trajectory was

computed for the desired elliptical FOV using the Larson

method (6), based on

Dufull½n� ¼
1

kmaxFOVðufull½n� þ p=2Þ [2]

where the angles of the spokes are noted as ufull½n�,
n ¼ ½0;1; . . . ;NÞ, and Dufull½n� are the angle increments. N

is the total number of spokes. Further fine adjustments

were performed to improve trajectory symmetry, as

described in detail in (6). Second, the index for the ith

GA spoke in the physical k-space was normalized to

have the same range as the fully sampled spokes, by

multiplying u0 by N:

indga½i� ¼ N �mod
2i

1þ
ffiffiffi
5
p ;1

� �
¼ N � u0½i�; i

¼ ½0;1; . . . ; 1Þ: [3]

Next, the fully sampled trajectory calculated previously,
as described by ufull (yellow dots in Figure 1b), can be
used to generate a continuous mapping function between
the index [0 N) and u by any interpolation method. In
the simplest form of linear interpolation (blue curve), u½i�
for the ith GA spoke is computed by

u½i� ¼ ufull½A½i�� þ D½i� � Dufull½A½i�� [4]

where A[i], D[i] are the integer and decimal part of indga

respectively, i.e., A[i] ¼ ½indga½i��, D[i] ¼ indga½i�–A½i�.
This practical interpolation approach is in fact equiv-

alent to finding Tfu0g by finding an approximation of
F�1ðu0Þ that is easier to compute. In the case of piece-
wise linear interpolation (Fig. 1b), it is the same as
generating a piecewise linear approximation of F�1ðu0Þ
(blue curve), based on which u½i� can be determined
from its corresponding u0½i�. The numerically computed
optimal F�1ðu0Þ is also plotted (red curve) for comparison.

One elliptical FOV (major:minor axis ¼ 100:20 pixels)
was generated using the approach above and used as an
example to perform further analysis. The point-spread-
functions (PSFs) of the proposed sampling schemes were
generated to analyze the main lobe and side lobes inside
the desired FOV. The normalized spoke density histo-
grams for different temporal window lengths and across
different temporal windows were also compared with
the optimal density distribution f ðuÞ.

The proposed sampling scheme was implemented on a
3T Signa HDxt scanner (GE Heathcare, Milwaukee, WI).
Phantom images were acquired and compared against

FIG. 1. Generation of golden angle radial trajectory for anisotropic FOV. a: A fully sampled radial trajectory, indexed by [0, N), is first

determined for the desired FOV. The index of the ith GA spoke indga[i] is also calculated. b: The fully sampled trajectory from a) can be
described by ufull (yellow dots) and used to generate a continuous mapping function between the index and u by any interpolation

method. Piecewise linear interpolation is used here (blue curve). u½i� can be determined based on the curve. This approach is equivalent
to finding Tfu0g by finding an approximation of F�1ðu0Þ that is easier to compute. In the case of piecewise linear interpolation, it is the
same as generating a piecewise linear approximation of F�1ðu0Þ. The range of u0 is [0,1), which corresponds to the index range [0 N).

The numerically computed optimal F�1ðu0Þ is also plotted (red curve) for comparison. A small FOV (X:Y ¼ 25:5 pixels, resulting in N ¼
15) is purposely chosen in the figure for better visualization.
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conventional GA sampling as well as the Larson’s

method. It was also implemented on a 1.5T Magnetom
Avanto scanner (Siemens Healthcare, Erlangen, Germany).
In vivo horizontal long-axis cardiac images were acquired
using a real-time radial gradient echo sequence in one

healthy volunteer. The proposed method with elliptical
and rectangular FOV with major-to-minor-axis ratio 1:0.4
were compared with conventional GA sampling. Imaging
parameters: FOV 320 mm � 320 mm (conventional GA)

or 320 mm � 128 mm (elliptical/rectangular), 480 samples
per readout, flip angle 85�, TE/TR 1.5/3.75 ms, acquisition
time 128 ms (34 spokes) or 206 ms (55 spokes) per frame.

The sampling pattern generation and the reconstruc-
tion were also implemented in MATLAB (Mathworks,

Natick, MA) and can be downloaded at http://mrel.usc.
edu/share.html. All images were reconstructed using the
gridding algorithm (9), with sampling density compensa-
tion factor calculated by the Voronoi approach (10).

To quantify the benefit of elliptical FOV imaging, the

number of spokes required were compared between the fully
sampled circular FOV trajectories and elliptical FOV trajec-
tories with different major-to-minor-axis ratios. This compar-

ison was also used for the same undersampling factor in
both cases.

RESULTS

Figures 2 and 3 contain representative results for an ellipti-

cal FOV (major : minor axis ¼ 100:20 pixels). Figure 2a con-
tains the PSF of the fully sampled radial trajectory using the
Larson method (60 spokes). Figures 2b–d contain the PSFs

using the proposed GA trajectories. Three consecutive tem-
poral frames with spokes equal to the next Fibonacci number
(Nga ¼ 89) are shown. One temporal frame of conventional
GA sampling with 89 spokes is also shown in Figure 2e. The
desired FOV is plotted on top (white dash lines). Figures 2f,g
plot the major and minor axes of the PSFs between the
arrows, with colors that correspond to b–e, respectively. The
fully sampled plots in (a) are also shown for comparison (red
dash lines). Shaded areas represent the desired FOVs. While
small residual side lobes still exist inside the desired FOV
using the proposed method, they are at least 	100� smaller
when the spoke number is increased to the next Fibonacci
number. Also note these side lobes are incoherent at differ-
ent temporal frames. Conventional GA sampling produces
significantly larger side lobes along the major axis.

Figure 3 compares the sampling patterns using the
proposed method with different spoke numbers. Both
Fibonacci f34, 55, 89g and non-Fibonacci f24, 40, 70g
numbers are shown. The FOV ratio is identical to what
is used in Figure 2. The corresponding normalized spoke
density histogram is averaged over 100 frames. Error bars
in Figure 3 represent plus or minus 1 SD within each
bin. Each red line in Figure 3 represents the optimal
spoke density distribution for this FOV, i.e.:

f ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðuÞ

b2
þ sin2ðuÞ

a2

r �1
Zp

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðuÞ

b2
þ sin2ðuÞ

a2

r �1

du

,

[5]

FIG. 2. PSFs of for an elliptical FOV (X:Y ¼ 100:20 pixels). a: Fully sampled radial sampling using the Larson method (N ¼ 60). White
dash line represents the desired FOV. b–d: Three consecutive temporal frames using the modified GA sampling, with spoke per frame

equal to the next Fibonacci number 89. e: One temporal frame using conventional GA sampling, also with 89 spokes. f,g: Plot of the
major and minor axes of the PSFs between the arrows, with colors corresponding to (b–e), respectively. The fully sampled plots in a)

are also shown for comparison (red dash lines). Shaded areas represent the desired FOVs.
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where a and b are the major and minor axes of the ellip-

tical FOV in pixel units (100, 20 in this example). The

normalized density histograms indicate that the spoke

distributions are very stable for different temporal win-

dow length, and across different temporal frames. They

always follow the optimal densities f ðuÞ.
Figure 4 contains images of a ball phantom and an

ultrafine resolution phantom placed side by side and

acquired using different methods for comparison. All

images have 400 x 120 pixels with 0.75 mm isotropic

resolution. Figures 4a,c were acquired using conven-

tional GA. Figures 4b,d were acquired with the proposed

GA for elliptical FOV. Figure 4e was acquired with Lar-

son’s method satisfying Nyquist rate. The number of

spokes used in Figures 4a–e were 144, 144, 315, 315,

and 315, respectively. The proposed GA sampling

FIG. 3. Sampling patterns using the proposed method. The same elliptical FOV ratio (100:20) in Figure 2 is used. One temporal frame is
shown for each temporal width (number of spokes). The corresponding normalized spoke density histogram is averaged over 100

frames and listed below. Error bars for each bin represent plus or minus one standard deviation. The optimal spoke density distribution
is also plotted (red line).
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satisfying the Nyquist rate (N ¼ 377) is also listed in Fig-

ure 4f. The unaliased FOV shapes are plotted in white

dashed lines for each sampling scheme. The enlarged

regions within the white rectangle are also shown to bet-

ter illustrate streaking artifacts. The strong streaking arti-

facts that exist in Figures 4a,c are significantly reduced

with the proposed sampling in Figures 4b,d without

increasing the number of samples. When Nyquist sam-

pling rate is met, the streaking artifacts are further

reduced inside the FOV (Fig. 4f) and the image quality is

comparable to the Larson’s method (Fig. 4e).
Figure 5 compares real-time horizontal long-axis-view

cardiac images with different sampling schemes. The top

row shows one diastolic frame with 34 spokes recon-

structed with gridding using conventional GA, proposed

GA with rectangular and elliptical FOV (major-to-minor-

axis ratio 1:0.4) sampling respectively. The unaliased FOV

shapes are plotted in white dashed lines for each sampling

scheme. The enlarged region of interest, together with

another systolic frame are shown. The bottom rows show

two frames from the same acquisition reconstructed with

55 spokes. Excess streaking artifacts can be observed in all

conventional GA cases (white arrows).
Supporting Figure S1, which is available online, plots

the percentage of data needed for the elliptical FOV when

compared with the circular FOV radial sampling with the

same acceleration factor, as a function of the major-to-

minor-axis ratio. In the example provided in Figure 4

where the ratio is 0.3, it corresponds to a 50% reduction in

scan time.

DISCUSSION

Figures 2 and 3 indicate that the proposed method is

able to achieve anisotropic FOV support using a GA sam-

pling scheme. When the same number of spokes as in

the fully sampled trajectory are used, the PSFs will
exhibit minor side lobes inside the desired FOV, due to

the nature of imperfect uniform distribution of GA
spokes, especially when the number of spokes per frame
is small and/or not a Fibonacci number. In applications

where undersampling is not desired, the maximum azi-
muthal gap for conventional GA has been calculated in

Winkelmann et al (7):

DumaxðNgaÞ ¼
gð1� gÞi�1

p Fð2iÞ 
 Nga < Fð2i þ 1Þ

ð1� gÞip Fð2i þ 1Þ 
 Nga < Fð2i þ 2Þ

8<
: [6]

where g ¼ 2=ð1þ
ffiffiffi
5
p
Þ, and FðkÞ is the Fibonacci number

for k > 0. For elliptical FOV, this can be directly applied
in the angle-normalized u0 space to choose the spoke

number that satisfies

DumaxðNgaÞ=p ¼ Du0maxðNgaÞ 
 Du0Nyquist ¼ 1=N [7]

to avoid undersampling, where N is the spoke number
for the fully sampled trajectory determined by the Larson

method. In our example (Fig. 2), this results in Nga¼ 89,
which leads to significant aliasing reduction. The
remaining low-level aliasing inside the FOV is likely due

to (a) imperfect parametric mapping when piecewise lin-
ear interpolation is used; and (b) the finite width of ali-
asing lobes is not accounted for in the Larson method, as

discussed in detail in (6). Note that aliasing was insignif-
icant (at least 	100� lower than the main lobe in the

provided example) and should be negligible for most
clinical applications.

When Nyquist sampling is not required, as in most of
the dynamic GA applications, the proposed method

nicely combines the benefits of anisotropic FOV and the
GA sampling scheme. Figures 2f and g indicate that the

FIG. 4. Comparison of phantom images with different FOVs. All images have 0.75 mm isotropic resolution, 400 � 120 pixels. a,c: Con-
ventional GA sampling, (b,d) proposed GA sampling for elliptical FOV. a,b: Both use 144 spokes; (c,d) both use 315 spokes. Note the

significantly reduced streaking artifacts in (b,d). e: Larson’s method satisfying Nyquist rate (315 spokes). f: Proposed GA sampling satis-
fying Nyquist rate (377 spokes), the image quality is comparable to (e). The unaliased FOV shapes are also shown (white dashed lines)
for each sampling scheme. One region (white rectangle) is enlarged in the bottom row to better illustrate streaking artifacts due to

undersampling.
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PSFs of the proposed trajectories are stable (main lobe)
and incoherent (side lobes) over time. This is desired for
undersampled dynamic imaging, as it is intrinsically
compatible with compressed sensing reconstruction (11).
Figure 3 demonstrates that the modified GA sampling is
able to maintain the desired spoke distribution for aniso-
tropic FOV for arbitrary window sizes. Similar to con-
ventional GA, optimal results can be obtained when a
Fibonacci number is used for the window size.

Figure 4 shows that the proposed method can signifi-
cantly reduce streaking artifacts for the same acquisition

time when compared with conventional GA. It can also
achieve comparable image quality as Larson’s method
when Nyquist sampling is satisfied.

In vivo results also confirm that less streaking can be
observed with the proposed method after gridding (Fig.
5). Because less aliasing needs to be resolved compared
with conventional GA sampling, a higher acceleration
factor can be expected after combining with parallel
imaging and/or constrained reconstruction. Also notice
that while both have better perfomance than conven-
tional GA sampling, the differences between elliptical

FIG. 5. Comparison of horizontal long-axis
cardiac images with different FOV shapes.

Real-time acquisition with breath-hold
were used for all images. Top: diastolic

frame with 34 spokes reconstructed with
gridding using conventional GA, proposed
GA with rectangular and elliptical FOV

(major-to-minor-axis ratio 1:0.4) sampling
respectively. The unaliased FOV shapes

are shown (white dashed contour) for each
sampling scheme. The enlarged region of
interest, together with another systolic

frame are also shown. Bottom: two frames
from the same acquisition reconstructed
with 55 spokes. The conventional GA

cases contain a visibly larger amount of
streaking artifact due to undersampling

(white arrows).
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and rectangular FOV samplings are difficult to detect.
This suggests that the proposed method is insensitive to
small differences in the FOV shape when heavy under-
sampling is used.

The benefit of anisotropic FOV radial imaging
increases with FOV asymmetry. For elliptical FOV, it
can be expressed as a function of the major-to-minor-axis
ratio, as plotted in supporting Figure S1. The gain could
be most significant in applications such as dynamic
contrast-enhanced spine or leg imaging where the major-
to-minor-axis ratio can be 1:0.3 or higher. In these appli-
cations, time-intensity curves of properties like blood or
bone marrow perfusion are often measured (12–14) but
the optimal trade-offs between the temporal resolution
and SNR for accurate measurements are difficult to
know in advance. The proposed method not only makes
radial sampling much more efficient but also makes such
prior knowledge less critical. The optimal temporal reso-
lution can be determined retrospectively. Even in the
case of cardiac or abdominal imaging where the ratio is
approximately 1:0.5, a 33% scan time reduction can still
be achieved. This is particularly useful for real-time
applications where the acquisition window is short and
underdamping is inevitable (15,16).

The piecewise linear interpolation approach should
be able to serve as a good approximation for FOV ranges
in most clinical applications. In our experience, only in
the cases of extremely small and asymmetric FOV (in
pixel units), where N < 10 for fully sampled radial tra-
jectory and X/Y > 5, did the R2 values between the
optimal and approximated F�1ðuÞ drop below 0.99. In
such cases, a higher order spline interpolation can be
used. Alternatively, piecewise linear interpolation can
always be applied on a larger FOV with the same shape,
so that f ðuÞ does not change.

The proposed method is also compatible with any
other sampling scheme that targets uniform spoke den-
sity distribution besides golden angle. One example is
the recent work on “small golden angles” by Wundrak
et al (17), in which a set of azimuthal angle increments
smaller than the golden angle were found to give
nearly uniform spoke distributions as long as certain
minimum number of spokes are used. This is particu-
lar useful to reduce eddy currents in balanced-SSFP
radial MRI.

Recently the combination of parallel imaging, con-
strained reconstruction, and conventional GA sam-
pling has become increasingly popular to push the
limit of accelerating MRI (15,16,18). The proposed
method can be easily incorporated into these frame-
works and substitute the convention GA sampling to
further reduce scan time, should they be applied to
noncircular FOV imaging. It also requires very light
calculations, which can be computed on-the-fly to
allow interactive modifications of plane orientation
and FOV change.

CONCLUSIONS

We have demonstrated a simple solution to enable 2D
anisotropic FOV support for golden angle radial imag-
ing. This can reduce imaging times in many scenarios

(abdomen, spine, etc.) where the object dimensions

are anisotropic, while still allowing for retrospective

selection of temporal resolution. It can be easily

extended to 3D stack-of-stars imaging and combined

with other acceleration techniques to further reduce

scan time.

APPENDIX

Elliptical FOV

Let a, b be the major and minor axes in pixel units:

FOVðuÞ ¼ ab=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2ðuÞ þ b2cos2ðuÞ

p
[A1]

For isotropic resolution, kmaxðuÞ is a constant, therefore,

f ðuÞ / FOV uþ p

2

� �
¼ ab=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2 uþ p

2

� �
þ b2cos2 uþ p

2

� �r

¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðuÞ

b2
þ sin2ðuÞ

a2

r
[A2]

After normalization (i.e., integral over [0 p) is 1), the nor-

malized spoke density is

f ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðuÞ

b2
þ sin2ðuÞ

a2

r �1
Zp

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðuÞ

b2
þ sin2ðuÞ

a2

r �1

du

,

[A3]

The angle for ith GA spoke is given by u½i� ¼ F�1ðu0½i�Þ, FðuÞ
is the cumulative distribution function:

FðuÞ ¼

Zu

0

f ðuÞdu ¼
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2�b2Þcosð2uÞþa2þb2

a2

q
Fellipðuj1� b2

a2Þ
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � b2Þcosð2uÞ þ a2 þ b2

p
[A3]

where A ¼
R p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðuÞ

b2 þ sin2ðuÞ
a2

q �1

du, Fellip is the elliptic

integral of the first kind, and cannot be calculated ana-

lytically. Therefore, F�1 cannot be expressed analytically

either.

Rectangular FOV

Let a, b be the long and short sides of the rectangle in

pixel units, similar to elliptical FOV, the normalized

spoke density is:

f ðuÞ ¼

b=ð2AcosuÞ u 2 ½0; u1Þ

a=ð2AsinuÞ u 2 ½u1; p� u1Þ

�b=ð2AcosuÞ u 2 ½p� u1;pÞ

8>><
>>: [A4]

where u1 ¼ atanða=bÞ, A¼
R p

0 f ðuÞdu ¼ F1ðu1Þ þ F2

ðp� u1Þ � F2ðu1Þ þ F3ðpÞ � F3ðp� u1Þ, F1ðuÞ ¼ b
2 ðlog sin u

2

�
þcos u

2Þ � log cos u
2� sin u

2

� �
Þ, F2ðuÞ ¼ a

2 ðlog sin u
2

� �
� log

cos u
2

� �
Þ, F3ðuÞ ¼ �F1ðuÞ.
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The cumulative distribution function becomes:

FðuÞ ¼

Zu

0

f ðuÞdu

¼

F1ðuÞ ½0; u1Þ

F1ðu1Þ þ F2ðuÞ � F2ðu1Þ u 2 ½u1; p� u1Þ

F1ðu1Þ þ F2ðp� u1Þ � F2ðu1Þ þ F3ðuÞ

� F3ðp� u1Þ ½p� u1;pÞ

8>>>>>>>><
>>>>>>>>:

[A5]

Although FðuÞ has a close form solution, F�1 cannot be
expressed analytically.

REFERENCES

1. Hounsfield GN. Computerized transverse axial scanning (tomogra-

phy). Part 1. Description of system. Br J Radiol 1973;46:1016–1022.

2. Lauterbur PC. Image formation by induced local interactions: examples

employing nuclear magnetic resonance. Nature 1973;242:190–191.

3. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic reso-

nance: an introduction to ultrashort TE (UTE) imaging. J Comput

Assist Tomogr 2003;27:825–846.

4. Nishimura DG, Jackson JI, Pauly JM. On the nature and reduction of the

displacement artifact in flow images. Magn Reson Med 1991;22:481–492.

5. Glover GH, Pauly JM. Projection reconstruction techniques for reduc-

tion of motion effects in MRI. Magn Reson Med 1992;28:275–289.

6. Larson PEZ, Gurney PT, Nishimura DG. Anisotropic field-of-views in

radial imaging. IEEE Trans Med Imaging 2008;27:47–57.

7. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An

optimal radial profile order based on the golden ratio for time-

resolved MRI. IEEE Trans Med Imaging 2007;26:68–76.

8. Devroye L. Non-uniform random variate generation. Berlin: Springer-

Verlag; 1986. p 28.

9. Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a

minimal oversampling ratio. IEEE Trans Med Imaging 2005;24:799–808.

10. Rasche V, Proksa R, Sinkus R, Bornert P, Eggers H. Resampling of

data between arbitrary grids using convolution interpolation. IEEE

Trans Med Imaging 1999;18:385–92.

11. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of com-

pressed sensing for rapid MR imaging. Magn Reson Med 2007;58:

1182–1195.

12. Griffith JF, Yeung DKW, Antonio GE, Lee FKH, Hong AWL, Wong

SYS, et al. Vertebral bone mineral density, marrow perfusion, and fat

content in healthy men and men with osteoporosis: dynamic

contrast-enhanced MR imaging and MR spectroscopy. Radiology

2005;236:945–951.

13. Chen W-T, Shih TT-F, Chen R-C, et al. Blood perfusion of vertebral

lesions evaluated with gadolinium-enhanced dynamic MRI: in com-

parison with compression fracture and metastasis. J Magn Reson

Imaging 2002;15:308–314.

14. Biffar A, Schmidt GP, Sourbron S, et al. Quantitative analysis of ver-

tebral bone marrow perfusion using dynamic contrast-enhanced MRI:

initial results in osteoporotic patients with acute vertebral fracture.

J Magn Reson Imaging 2011;33:676–683.

15. Feng L, Grimm R, Block KT, et al. Golden-angle radial sparse parallel

MRI: combination of compressed sensing, parallel imaging, and

golden-angle radial sampling for fast and flexible dynamic volumetric

MRI. Magn Reson Med 2014;72:707–717.

16. Chandarana H, Feng L, Block TK, et al. Free-breathing contrast-

enhanced multiphase MRI of the liver using a combination of com-

pressed sensing, parallel imaging, and golden-angle radial sampling.

Invest Radiol 2013;48:10–16.

17. Wundrak S, Paul J, Ulrici J, Hell E, Rasche V. A small surrogate for

the golden angle in time-resolved radial MRI Based on generalized

fibonacci sequences. IEEE Trans Med Imaging 2014;34:1262–1269.

18. Coppo S, Piccini D, Bonanno G, et al. Free-running 4D whole-heart

self-navigated golden angle MRI: initial results. Magn Reson Med

2015;74:1306–1316.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Figure S1. The benefit of elliptical FOV imaging increases with FOV asym-
metry. The plot shows the percentage of data needed for elliptical FOV
when compared with circular FOV radial sampling as a function of the
major and minor axes ratio, given the same undersampling factor.
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