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Purpose: To evaluate the potential value of combining multiple constraints for highly accelerated cardiac
cine MRI.
Methods: A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were
combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively
undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data
using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm
(HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single
breath-hold whole-heart cine (12 short-axis slices, 9–13 s single breath hold). Reconstruction was
compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR.
Results: At 10 to 60 spokes/frame, LLR + FD better preserved fine structures and depicted myocardial
motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM

ranking than FD; FD had higher HFEN ranking than LLR. LLR + FD combined the complimentary
advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases.
Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane
spatio-temporal resolutions of 2 × 2 mm2 and 40 ms.
Conclusion: Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the
synergistic use of LLR and FD constraints.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Cardiac cine MRI is the non-invasive gold standard technique for
evaluating cardiac function and wall motion in humans [1,2]. A
typical examination covers the heart using multiple 2D slices,
roughly ten to twelve short-axis slices and three to six long-axis
slices [1]. Scan protocols utilize electrocardiogram or plethysmo-
graph gating to synchronize MRI acquisitions with the cardiac cycle,
and 10–15 s breath holds to avoid artifacts from respiratory motion
(one breath hold per slice). There is significant opportunity for
improvement through the use of acceleration. Roughly 10% of
cardiac patients have arrhythmias or are otherwise unable to hold
their breath, and benefit from real-time methods that do not require
cardiac synchronization or breath holding. Among appropriate
patients, inconsistencies between breath holds leads to slices being
acquired in different respiratory states, which requires a complex
registration step prior to quantitative functional analysis. Finally,
current methods are geared towards assessment of the left ventricle,
whereas assessment of the left atrium, valves, and right heart
chambers requires higher and potentially isotropic spatial resolution
via 3D imaging.

Several methods have been proposed to accelerate cine imaging.
Parallel imaging methods shorten the scan time by exploiting the
sensitivities of multiple coils [3,4]. However, high acceleration with
acceleration factor above 4 is rarely used in practice because it is
limited by the coil geometry and its associated g-factor SNR losses
[4]. Compressed sensing (CS) has shown promise to accelerate
dynamic imaging even further [5–10]. CS encourages sparse
representations of the dynamic images in a known transform
domain, and utilizes a non-linear recovery algorithm to reconstruct
the images from undersampled k-space data. Transforms such as
spatial wavelet [5,7,8], temporal frequency [7–9], and spatio-
temporal finite difference [10] have been previously explored. A
challenge associated with using a single sparsity constraint is the
potential misfit between the model representation and the dynamic

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mri.2016.03.007&domain=pdf
http://dx.doi.org/10.1016/j.mri.2016.03.007
mailto:xinm@usc.edu
http://dx.doi.org/10.1016/j.mri.2016.03.007
http://www.sciencedirect.com/science/journal/0730725X


708 X. Miao et al. / Magnetic Resonance Imaging 34 (2016) 707–714
data; many transform coefficients are often required to accurately
represent the signal at hand. This limits the maximum achievable
acceleration rate. Adaptive methods that rely on transforms derived
from the data itself have recently been proposed. Methods based on
partially separable functionmodel (PSF) [11] that exploit similarities
among pixel-time profiles include k-t PCA [12], incremented rank
power factorization (IRPF) [13,14], sparsity and low rank regulari-
zation (k-t SLR) [15–17], and blind compressed sensing [18]. They all
enforce a global model on every time profile being expressed as a
combination of few temporal basis functions. These basis functions
can be orthogonal (e.g. estimated using singular value decomposi-
tion [15–17]), or non-orthogonal (e.g. estimated via dictionary
learning [18]).

Methods based on regional similarities have also been proposed.
A locally low rank (LLR) scheme was proposed in [19], where low
rank structure was promoted on overlapping small patches
extracted from the global image matrix. k-t PCA was adapted to
promote similarities on anatomically segmented compartments [20].
Motivated by the success of improving global low rank constraint via
combining it with sparsity constraints [15–17,21,22], we propose to
exploit additional sparsity constraints in the LLR framework. In this
paper, we improve the LLR method by combining it with temporal
finite difference constraint and parallel imaging, and investigate its
utility for highly accelerated cardiac cine imaging.

2. Theory

2.1. Global and local low rank models

Cine images represent a time series in a complete cardiac cycle.
The images can be represented as a Casorati matrix (ΓMxN) by
stacking the pixels from every time frame columnwise, whereM and
N respectively represent the number of pixels per time frame, and
the total number of time frames [11]. Global low rank methods (e.g.
[14,15]) recover Γ from undersampled k-space data by constraining
the rank of Γ as:

Γ� ¼ argmin
Γ

F � S � Γ−mk k22 þ λ rank Γð Þ ð1Þ

where m is the multi-coil k-space measurement, F is the Fourier
undersampling operator, and S are the coil sensitivity maps.

In contrast to global low rank (GLR) methods, locally low rank
(LLR) methods [19] divide the global images into patches, and
enforce the low-rank constraint on the matrix of each patch:

Γ� ¼ argmin
Γ

F � S � Γ−mk k22 þ λ
X
b∈Ω

rank CbΓð Þ ð2Þ
a)
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Fig. 1. Appropriateness of a locally low rank (LLR)model for cardiac cine images. (a) Referen
the heart region and the chest wall respectively. (b) Normalized singular values of the twom
of rank-deficiency. (c) Rank map: color indicates the rank of each patch matrix. The rank
value. Patches covering or partially covering the heart region of interest (ROI) have cons
Rank-deficiency also varies within the heart ROI.
where Cb is the operator to extract the bth patch from Γ and reform it
into a Casorati matrix, and Ω is the total number of patch matrices
extracted from Γ.

Compared with GLR, LLR is a more appropriate model for cardiac
cine images demonstrated by Fig. 1. Fig. 1 analyzes the rank property
of patch matrices extracted from a cine dataset. It can be seen from
Fig. 1b that the patch matrix from the chest wall has lower effective
rank than a patch extracted from the heart. Even within the heart
region, the low-rank property could vary (Fig. 1c). Patch matrices
from regions with more dynamics have higher effective rank.

In the previous LLR framework [19], the nuclear norm was used
to relax the rank penalty, which is the closest convex approximation.
Recent work has shown that using non-convex semi-norm improves
the reconstruction from fewer measurements compared to the
nuclear norm [15,23,24]. Here, the non-convex Schatten p-norm is
used as a surrogate for the rank penalty. For a M×N matrix X, the
Schatten p-norm is defined as:

Xk kp ¼
Xmin M;Nð Þ

i−0

σp
i

 !1=p

;pb1 ð3Þ

where σi is the ith singular value of matrix X.

2.2. Combination of LLR and temporal FD

The combination of GLRwith sparsity constraints has been shown
in various forms to improve image recovery rate and reconstruction
performance [15–17,21,22]. In this study, the LLR and temporal finite
difference (FD) constraints are jointly exploited. The optimization is
formulated as:

Γ� ¼ argmin
Γ

F � S � Γ−mk k22 þ λLLR Φ Γð Þk kp þ λFD ∇t Γð Þk k1 ð4Þ

where ∇t is the finite difference operator along time, and ||Φ(Γ)||p is
the Schatten p-norm defined on patches as:

Φ Γð Þk kp ¼
X
b∈Ω

CbΓk kp;pb1 ð5Þ

3. Methods

Experiments were performed on both retrospectively under-
sampled 2D Cartesian cine data and prospectively undersampled 2D
golden-angle radial data. For comparison, reconstruction on the
same dataset was also performed using state-of-the-art constrained
reconstruction methods. In following text, LLR, FD and LLR + FD
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was computed as the number of singular values above 0.5% of the maximum singular
iderably higher rank than patches from the chest wall and other background tissue
.
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would respectively refer to the reconstructionmethods using the LLR
constraint alone, temporal finite difference constraint alone, and the
combination of both constraints.

3.1. Retrospective study

Six fully sampled cardiac cine datasets were distributed as part of
the 2014 ISMRM Reconstruction Challenge [39]. The data were
collected using 2D cine breath-held balanced steady state free
precession (bSSFP) sequences and 32-channel cardiac receiver coils.
Three of the datasets were acquired in a mid ventricular short-axis,
and three at vertical long-axis. Datasets havematrix size in the range
of 210×330 to 210×426, spatial resolution 1 mm2, 30 time frames
per cardiac cycle. The fully sampled datasets were retrospectively
undersampled in two dimensions using variable density random [6]
and Cartesian golden-angle radial sampling patterns [25–27].
Acceleration factor ranging from 5 to 30 for 2D random sampling
and 10 spokes to 60 spokes per time frame for Cartesian radial
sampling were chosen to evaluate the reconstruction performance of
the proposed method.

The proposed method was compared against three methods,
which uses the temporal FD constraint alone (λLLR=0 in Eq. (4)),
LLR constraint alone ( λFD=0 in Eq. (4)) and k-t SLR method [15].
k-t SLR was implemented by replacing the LLR constraint in Eq. (4)
with global low rank constraint using Schatten p-norm [15]. For LLR
constraint, overlapping square patches were extracted from the
global image. Patch size was 5×5×Nt, which resulted in smallest
normalized root mean square error (NRMSE) in the heart region.
Patches were overlapped with a striding length of 2. Coil sensitivity
maps were computed by averaging data from all time frames and
using ESPIRIT [28]. The p-value in the Schatten p-norm computation
was set as 0.5. The regularization parameters were optimized for
each reconstruction method at each undersampling level by
referring to normalized root mean square error (NRMSE) in the
heart region. This optimization was performed for one dataset and
then applied to all other datasets. In the algorithms of LLR + FD and
k-t SLR, which have two regularization terms, parameters were
optimized in a two dimensional version. The optimization problem
in Eq. (4) was solved using an Alternating Direction Method of
Multipliers (ADMM) [29]. A twice-variable-splitting technique was
used to decouple the problem in Eq. (4) to simpler sub-problems
that have analytical solutions [29]. The steps of the algorithm are
detailed in the Appendix A. All reconstruction methods were
implemented in MATLAB and executed on a 12-core Xeon worksta-
tion with 48 Gb of memory. Parallel computing was used in LLR and
LLR + FD reconstructions in the step of singular value thresholding
on multiple patch matrices.

For retrospective study, reconstruction results were evaluated
based on both visual inspection and quantitative metrics: normal-
ized root mean square error (NRMSE), structural similarity index
(SSIM) [30] and high frequency error norm (HFEN) [31]. The choice
of the three metrics was made to evaluate the reconstruction results
with complimentary emphasis. NRMSE was chosen to evaluate the
overall accuracy in reconstructing the spatio-temporal dynamics in
the region of interest (ROI). SSIM put emphasis on image quality
perception. HFEN was chosen to evaluate the fine features, edges,
and spatial blurring in reconstruction. All metrics were computed
within a manually segmented ROI that contained the heart. At each
undersampling level, the four methods were ranked from best to
worst using the quantitative metrics. Considering the variability in
metric values across datasets, the ordinal ranking was averaged
across all the six datasets.

• NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kΓ�−Γ0k2F
kΓ0k2F

r
, where Γ⁎ is the reconstructed image, and Γ0
is the true image.
• SSIM was computed as described in [30]. Note that 1-SSIM is
presented, so that “lower is better” for all three metrics.

• HFEN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kLoGðΓ�Þ−LoGðΓ0Þk2F

kLoGðΓ0Þk2F

r
, where LoG is a Laplacian of Gaussian

filter that captures the edges. The same filter specifications as in
[31] are used: kernel size of 15 × 15 pixels; standard deviation
of 1.5 pixels.

3.2. Prospective study

A multi-slice golden-angle radial acquisition in a single breath-
hold was performed on Philips 1.5 T scanner using a 32 channel
cardiac coil in two healthy volunteers. Data corresponding to each
slice were acquired during a single cardiac cycle with ECG triggering.
Written informed consent was obtained from both subjects prior to
imaging, and the protocol was approved by our institutional review
board. Scan parameters were as follows: bSSFP, TR = 2.90 ms,
TE = 1.45 ms, FOV: 320 × 320 mm2, in-plane resolution:
2 × 2 mm2, slice thickness: 8 mm, 12 slices, no inter-slice gap,
number of frequency encoding points: 160, 216–272 golden angle
radial profiles, and acquisition time 9–13 s. The radial profiles were
retrospectively grouped into 19–20 time frames resulting in 11–13
full profiles per time frame, with a time resolution in the range of 30–
40 ms. As a reference, fully-sampled cine data were acquired with
Cartesian trajectory in all subjects in multiple breath holds. The
reference scan used the same imaging parameters and slice
geometry as the radial acquisition.

For image reconstruction, Eq. (4) was modified to include NUFFT
[32] operator in place of the F operator. Coil sensitivity maps S were
estimated from data using all acquired golden angle radial profiles.
λLLR and λFD were empirically chosen, and were found to be
different from the retrospective experiments. The optimization
problem was solved using one-variable-splitting ADMM, where the
step of updating the images no longer involved an analytical update,
and was solved using a conjugate gradient algorithm. The rest of the
implementation was the same as in the retrospective study.

4. Results

4.1. Retrospective study

The four methods (LLR + FD, LLR, FD and k-t SLR) were
quantitatively compared. LLR + FD reconstruction had consistently
superior NRMSE, SSIM and HFEN scores compared to the other three
methods. The metric advantage of LLR + FD was more significant in
cases with higher level of undersampling (Fig. 2a). The score
difference for individual time frame was consistent with the average
of the entire time series (Fig. 2b).

Visual observations correlated well with the quantitative evalu-
ation. At 15 to 60 spokes per time frame, LLR + FD reconstruction
better preserved fine structure such as the tricuspid valve in the
long-axis case, and papillary muscles in the short-axis case
(arrowheads in the x-t plots in Fig. 3). LLR showed considerable
edge blurring. FD produced stair-case artifacts. k-t SLR produced less
FD-related artifacts but more edge blurring than LLR + FD. At 10
spokes per time frame, the characteristic artifacts of each method
described above were more pronounced. LLR + FD reconstruction
more reliably preserved the motion of myocardium than FD
reconstruction and provided sharper myocardial border than LLR
and k-t SLR.

For all six datasets, smaller regularization weights were observed in
the proposed LLR + FD scheme in comparison to using LLR or FD
constraint individually. For example, with one dataset (undersampled
with the Cartesian golden-angle radial sampling, 10 spokes per time
frame), the NRMSE optimal λFD was 0.01 (NRMSE = 0.109), λLLR was
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0.3 (NRMSE = 0.103). For LLR + FD, λFD and λLLRwere 0.006 and 0.06
respectively, and resulted in a higher fidelity reconstruction (NRMSE =
0.0902). This indicates that the FD and LLR constraints are complemen-
tary to one another.

Computational burden was significantly reduced by utilizing the
twice-variable-splitting ADMM algorithm, which decouples the
problem into single-step updates. For all 2D cardiac cine datasets, a
six to seven fold reduction in reconstruction time was observed with
the ADMM algorithm compared to the penalty-based approach used
in previous k-t SLR studies [15,22]. Total reconstruction time using
the ADMM approach was 7.8 ± 0.6 min for LLR + FD (parallel
f

t

computing applied), and 5.1 ± 0.5 min for k-t SLR. In contrast,
50 min was required with the penalty algorithm for k-t SLR and
LLR + FD reconstructions.

4.2. Prospective study

Fig. 4 compares the reconstructions for two prospectively
undersampled golden-angle radial datasets. Representative frames
from end-systole (ES), end-diastole (ED), and pixel-time profiles are
shown. Reference data, obtained using breath-held fully-sampled
Cartesian acquisition, provided excellent SNR and contrast. The
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radial datasets were undersampled with 11–13 full spokes per time
frame. Compared with the reference scan, LLR + FD most reliably
depicted the motion of myocardium. Compared to FD, LLR + FD
suppressed temporal stair-case artifact. Compared to LLR, LLR + FD
provided sharper edges and less temporal fluctuation due to aliasing.

5. Discussion and conclusions

In this study, LLR + FD was compared against the use of either
the temporal FD or the LLR constraint alone. It was found that
Table 1
Metric values and ordinal ranking averaged across six datasets are shown for the four reco
undersampled with Cartesian golden-angle radial sampling at 15 spokes per time frame.
superior performance in reconstructing edges, while LLR faithfully reconstructed the moti
SSIM but a low HFEN ranking. LLR + FD combining the advantages of LLR and FD achieve

Metrics FD

NRMSE Value (%) 8.3
Ordinal Ranking 4.0

1-SSIM Value (%) 8.2
Ordinal Ranking 4.0

HFEN Value (%) 9.4
Ordinal Ranking 2.7
LLR + FD provided more natural depiction of myocardial motion
compared to FD and improved the depiction of fine structures
compared to LLR. Table 1 showed the complimentary strengths of
the sparsity and locally low rank constraints. FD was superior in
reconstructing edges, as indicated by its high HFEN-ranking, but
produced stair-case artifacts at high undersampling levels due to
over-regularization. LLR faithfully reconstructed the motion of the
myocardium, but produced excessive edge blurring, corresponding
to a high SSIM-ranking but low HFEN-ranking. LLR + FD combined
the two constraints to produce fewer model-related artifacts with
nstruction methods: FD, LLR, k-t SLR, and LLR + FD. The datasets were retrospectively
Ordinal ranking was based on 1 = best, 4 = worst. FD has lower HFEN indicating its
on of the myocardium, but produced excessive edge blurring, corresponding to a high
d the best ranking in all three metrics.

LLR k-t SLR LLR + FD

7.4 7.3 6.7
2.7 2.2 1.0
6.0 6.2 5.5
2.5 2.5 1.0

10.6 9.0 9.0
4.0 1.7 1.5
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lower regularization weights for each constraint. Our work shares
similarities with a recent work in [33], where the sparsity constraint
has been explored in a “local” PSF framework, in which the PSF
model order was varied for cardiac and non-cardiac regions. The
PSF-based method requires training data and specific sampling
scheme for the purpose of computing the temporal basis functions.
In comparison, the proposed method does not require the training
step but has increased computational complexity.

In the retrospective study, it was observed that LLR + FD more
faithfully reconstructed the dynamics of fine structures (e.g. the
tricuspid valve in the long-axis view dataset, arrowheads in Fig. 3a)
than k-t SLR. This suggests that LLR could be a more appropriate
model for cardiac cine images than global low rank. LLR + FD has
greater computational complexity because it forces low rank
constraints on multiple patch matrices instead of one global matrix.
However, in this work, we have observed that the use of parallel
computing provides similar computational times with LLR + FD and
k-t SLR. It should also be noted that the implementation of k-t SLR in
this work exploited the computational benefits due to the splitting of
coil sensitivity encoding from the Fourier-undersampling operation
in the data consistency term (Appendix A, Eq. (A.1)). This splitting
was not considered in the earlier implementation of k-t SLR [15,22],
which involved solving an iterative conjugate gradient algorithm to
update the reconstruction, and therefore was substantially slower
than the splitting strategy considered in this work.

Cartesian golden-angle radial and 2D variable-density random
sampling patterns were used in the retrospective study. These two
sampling patterns produce incoherent aliasing in the two phase-en-
coding directions, which was successfully resolved by LLR-based
reconstruction methods. We have also evaluated LLR-constrained
reconstruction with 1D undersampling cases (not shown), where
the variable-density random sampling pattern was applied along a
single phase-encoding direction. In these cases, LLR-based methods
failed to eliminate residual aliasing. One possible reason is that the
Schatten p-norm or nuclear norm minimization, which is often used
to force the LLR constraint, requires more sampling incoherence than
the 1D sampling scheme can provide.

Based on results in the retrospective study, a golden angle radial
sampling was used in a prospective experiment to enable acquisition
of multiple 2D slices in a single breath hold. The results may also
translate to improving 3D Cartesian acquisition using variable
density type sampling patterns in the ky-kz plane [34]. In the
prospective study, LLR + FD reconstructions with 2D radial sam-
pling patterns demonstrated improved image quality over either FD
or LLR. The FD images appear to provide sharper edges than the
LLR + FD reconstructions. However, the FD pixel-time profiles
contain significant temporal stair-case artifacts, which include
discontinuities that are not physically realistic. It should be noted
that LLR + FD reconstructions still contained spatio-temporal
blurring, when compared with the Cartesian reference images.
Possible reasons could be that (a) the large golden-angle increment
in combination with bSSFP may lead to eddy current induced image
artifacts from rapidly changing gradients [35] and (b) radial
acquisition is more vulnerable to blurring caused by off-resonance
and eddy-current effects compared to Cartesian acquisition. Image
quality may be further improved by considering (a) small golden-
angle radial sampling to reduce eddy-current induced artifacts [36]
(b) estimating motion models within the LLR + FD reconstruction
to further improve spatio-temporal fidelity [37,38].

Clinical assessment of the artifacts and image quality provided
by different reconstruction methods, and their impact on
cardiac functional parameters were not performed in this work.
Such a study would require a cohort of large number of patient
datasets and careful supervision of cardiologists, and is a scope of our
future work.
Acknowledgments

This work was supported in part by American Heart Association
Grant-in-Aid 13GRNT13850012 and theWallace H. Coulter Foundation.
XM receives support from a USC Provost's Graduate Fellowship. We
thank the committee of 2014 ISMRM Reconstruction Challenge for
providing cine reference data (http://www.ismrm.org/challenge).

Appendix A

AnADMMapproach [29]was implemented to solve the optimization
problem in Eq. (4). Variable-splitting was performed twice. First, Z=
Γ ,V1=Φ(Z) and V2=∇t(Z) are set to split the patch-based operation
Φ(⋅) and the finite difference operation∇t(⋅) from the respective norms.
ThenU=S ⋅Γ is set to separate the sensitivitymap term from the Fourier
sampling term. This splitting avoids the need for an iterative conjugate
gradient solver inside each iteration. Eq. (4) was reformulated as:

Γ� ¼ argmin
Γ

F � U−mk k22 þ λLLR V1k kp þ λFD V2k k1;
subject to U ¼ S � Γ; Z ¼ Γ; V1 ¼ Φ Zð Þ; V2 ¼ ∇t Zð Þ

ðA:1Þ

To solve Eq. (A.1), a Lagrangian functional was formed as:

ℑρ1 ;ρ2 ;ρ3
Γ;U; Z;V1;V1; e11; e12; e2; e3ð Þ

¼ F � U−mk k22 þ λLLR V1k kp þ λFD V2k k1 þ :::

þρ1 Φ Zð Þ−V1−e11k k22 þ ρ1 ∇t Zð Þ−V2−e12k k22 þ :::

þρ2 S � Γ−U−e2k k22 þ ρ3 Γ−Z−e3k k22

ðA:2Þ

e11, e12, e2 and e3 are residual variables that would be updated in
each iteration. From our experience, ρ1 and ρ2 influence the speed of
convergence, but have minimal impact on the final reconstruction
result. In this work, ρ2 and ρ3were empirically set to 0.05 for all
datasets. Eq. (A.2) is solved by alternatively updating each variable,
while keeping the other variables fixed resulting in the pseudocode:

• maxItr— Stopping criteria bynumber of iterations (default = 100);
• ρ1 ,ρ2 ,ρ3 — Default = 0.05;

While (n b maxItr) {

1) Γ –subproblem is solved analytically.

Γ nþ1ð Þ ¼ argmin
Γ

ρ2 S � Γ−U nð Þ−e nð Þ
2

��� ���2
2
þ ρ3 Γ−Z nð Þ−e nð Þ

3

��� ���2
2

¼ ρ2S
HSþ ρ3I

� �−1
ρ2S

H U nð Þ þ e nð Þ
2

� �
þ ρ3 Z nð Þ þ e nð Þ

3

� �h i

2) U –subproblem is solved analytically.

U nþ1ð Þ ¼ argmin
U

F � U−mk k22 þ ρ2 S � Γ nþ1ð Þ−U−e nð Þ
2

��� ���2
2

¼ FH F þ ρ2I
� �−1

FHmþ ρ2 S � Γ nþ1ð Þ−e nð Þ
2

� �h i

3) Z-subproblem is solved analytically.

Z nþ1ð Þ ¼ argmin
Z

ρ1 Cb Zð Þ−V nð Þ
1 −e nð Þ

11

��� ���2
2
þ ρ1 ∇t Zð Þ−V nð Þ

2 −e nð Þ
12

��� ���2
2

þρ3 Γ nþ1ð Þ−Z−e nð Þ
3

��� ���2
2

¼ ρ1I þ ρ1∇
H
t ∇t þ ρ3I

� �−1h
ρ1 V nð Þ

1 þ e nð Þ
11

� �
þ ρ1∇

H
t V nð Þ

2 þ e nð Þ
12

� �
þρ3 Γ nþ1ð Þ−e nð Þ

3

� �i
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4) V1-subproblem enforces the LLR constraint. Singular value
thresholding is performed on each patch matrix. Patches are
recombined after thresholding.

V nþ1ð Þ
1 ¼ argmin

V1

λLLR V1k kp þ ρ1 Cb Z nþ1ð Þ� �
−V1−e nð Þ

11

��� ���2
2

¼ Singular Value thresholding
b∈Ω

Cb Z nþ1ð Þ� �
−e nð Þ

11

� �

5) V2-subproblem enforces the temporal FD constraint.

V nþ1ð Þ
2 ¼ argmin

V1

λFD V2k k1 þ ρ1 ∇t Z nþ1ð Þ� �
−V2−e nð Þ

12

��� ���2
2

¼ shrink ∇t Z nþ1ð Þ� �
−e nð Þ

12 ;λFD=ρ1

n o

Shrinkage is computed as:

shrink x;λð Þ ¼ sign xð Þmax xj j−λ;0ð Þ

6) Update residual variables

e nþ1ð Þ
11 ¼ e nð Þ

11−
X
b∈Ω

CbZ
nþ1ð Þ−V nþ1ð Þ

1

 !

e nþ1ð Þ
12 ¼ e nð Þ

12− ∇t Z nþ1ð Þ� �
−V nþ1ð Þ

2

h i
e nþ1ð Þ
2 ¼ e nð Þ

2 − S � Γ nþ1ð Þ−U nþ1ð Þ� �
e nþ1ð Þ
3 ¼ e nð Þ

3 − Γ nþ1ð Þ−Z nþ1ð Þ� �

}
The implementationof theproposed algorithmusingMATLAB canbe

found at http://mrel.usc.edu/sharing/LLR_TV_ADMM_codes.zip.
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