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Abstract— Goal: We demonstrate a novel and robust approach 

for visualization of upper airway dynamics and detection of 
obstructive events from dynamic 3D magnetic resonance imaging 
(MRI) scans of the pharyngeal airway. Methods: This approach 
uses 3D region growing, where the operator selects a region of 
interest that includes the pharyngeal airway, places two seeds in 
the patent airway, and determines a threshold for the first frame. 
Results:  This approach required 5 sec/frame of CPU time 
compared to 10 min/frame of operator time for manual 
segmentation. It also compared well with manual segmentation, 
resulting in Dice Coefficients of 0.84 to 0.94, whereas the intra-
observer variability of manual segmentation was 0.89 to 0.97 and 
was also able to automatically detect 83% of collapse events. 
Conclusion: Use of this simple semi-automated segmentation 
approach improves the workflow of novel dynamic MRI studies 
of the pharyngeal airway and enables visualization and detection 
of obstructive events. Significance: Obstructive sleep apnea is a 
significant public health issue affecting 4-9% of adults and 2% of 
children. Recently, 3D dynamic MRI of the upper airway has 
been demonstrated during natural sleep, with sufficient spatio-
temporal resolution to non-invasively study patterns of airway 
obstruction in young adults with OSA. This work makes it 
practical to analyze these long scans and visualize important 
factors in an MRI sleep study, such as the time, site, and extent of 
airway collapse. 
 

Index Terms— Biomedical image processing, image 
segmentation, magnetic resonance imaging, medical diagnostic 
imaging, sleep apnea.  

 
Feburary 11th, 2015. We acknowledge grant support from the National 

Institutes of Health (R01-HL105201). YCK received support from an 
American Heart Association postdoctoral fellowship (13POST17000066). 

*Ahsan Javed is with the Ming Hsieh Department of Electrical 
Engineering, Viterbi School of Engineering, University of Southern 
California, Los Angeles, CA, USA (correspondence email: 
ahsanjav@usc.edu). Asterisk indicates corresponding author. 

Yoon-Chul Kim was with the Ming Hsieh Department of Electrical 
Engineering, Viterbi School of Engineering, University of Southern 
California, Los Angeles, CA 90007 USA. He is now with Samsung Medical 
Center, Seoul, South Korea (email: yoonckim1@gmail.com). 

Michael C.K. Khoo is with the Department of Biomedical Engineering, 
Viterbi School of Engineering, University of Southern California, Los 
Angeles, CA 90007, USA (email: khoo@bmsr.usc.edu). 

Sally L. Davidson Ward is with the Department of Pediatrics, Keck School 
of Medicine, University of Southern California, Children’s Hospital Los 
Angeles, Los Angeles, California, USA. (email: sward@chla.usc.edu) 

Krishna S. Nayak is with the Ming Hsieh Department of Electrical 
Engineering and the Department of Biomedical Engineering, Viterbi School 
of Engineering, University of Southern California, Los Angeles, CA, USA 
(email: knayak@usc.edu). 
 

I. INTRODUCTION 
bstructive sleep apnea (OSA) syndrome is a common 
breathing disorder in which the airflow pauses during 
sleep due to physical collapse of pharyngeal airway [1]. It 

affects approximately 4-9% of adults [2] and 2% of children 
[3] in the United States; in particular, OSA has been reported 
in 13-66% of obese children  [4].  OSA is linked to decreased 
productivity, accidents, and increased risk of cardiovascular 
disease [5]. It is widely recognized that determining the 
accurate location of obstruction sites may benefit treatment 
planning and patient outcome [6].  

The current gold standard for diagnosing OSA is overnight 
polysomnography (PSG). PSG involves monitoring and 
continuously recording several physiological signals that 
reflect sleep and breathing, for roughly 7 to 8 hours.  The 
single most important output of overnight PSG is the apnea-
hypopnea index (AHI)—the average number of complete or 
partial obstructive events that occur per hour during sleep.  
PSG also helps to elucidate the impact of these events on sleep 
pattern and gas exchange. An overnight PSG requires 
interpretation by a skilled sleep specialist for visual scoring; in 
contrast, computer scoring has not been proven accurate.   

Objective monitoring is required because patient history and 
physical findings suggestive of OSA are not considered 
sufficiently sensitive or specific to make a diagnosis.  Often, 
uncomplicated cases of OSA in children can be diagnosed and  
treated with removal of the tonsils and adenoids or by the 
provision of positive airway pressure therapy. While PSG 
provides a detailed physiologic diagnosis, no information 
regarding the site, or sites, of obstruction can be inferred from 
the recording. This is especially important for complicated 
cases of OSA, including obesity and craniofacial 
abnormalities. In these cases surgical intervention directed at 
relieving sites of obstruction may be needed.  

Endoscopy is one imaging approach that provides site 
information.  It involves the use of cameras inserted through 
the nose, and anesthesia to mimic sleep, hence the alternative 
name drug induced sleep endoscopy (DISE). Endoscopy 
provides information about one site of obstruction and nothing 
distal to it.  Furthermore, it cannot replicate natural sleep or 
the various sleep cycles or sleep stages.  

Magnetic resonance imaging (MRI) is an alternative 
imaging approach that has shown significant potential for 
airway assessment and collapse site identification in these 
patients.  It is non-invasive, involves no ionizing radiation, 
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and can resolve all relevant soft tissues in three dimensions.  It 
has been shown to yield valuable insight into the dynamics 
and shape of airways for patients with OSA [7]–[9], and the 
primary limitation until now has been imaging speed.  

Previous MRI studies have focused on static 3D or dynamic 
2D imaging that can easily be performed on current clinically 
available MRI scanners [10]. Static 3D MRI provides a 
complete picture of the upper airway (UA) anatomy in patients 
with sleep disorders [7], but does not depict changes with tidal 
breathing or during collapse events.  Wagshul et al. recently 
showed that tidal breathing could be resolved using 
retrospective gating [11], however this approach would not 
apply to collapse events. Single and multi-slice dynamic 
imaging captures the dynamics of tidal breathing [12] and 
collapse events [13] [14].  These methods suffer from gaps in 
coverage and are susceptible to imperfect placement of the 
imaging slices.  

Recently, real-time 3D UA MRI during natural sleep has 
been demonstrated with 1.6-2.0 mm isotropic spatial 
resolution, 2 temporal frames per second, and synchronized 
recording of physiological signals [15], [16]. Each scan 
provides between 240 and 2400 temporal frames, 
corresponding to 2 to 20 minutes of continuous recording. In 
these studies, the shorter 2 minute scans were used for tests 
that involve a stimulus to encourage collapse [13] whereas 
longer 20 minute scans were used to capture natural collapse 
events.  We anticipate a potential need for even longer scans, 
on the order of hours, for the study of sleep state changes. 
With such large 3D dynamic data sets, analysis becomes a 
significant bottleneck. Using software assistance, manual 
upper airway segmentation requires roughly 10 minutes per 
3D volume.  Visual inspection of all data is not practical, and 
therefore automated segmentation and collapse detection tools 

could provide significant value. Such tools would enable 
identification of time periods of airway obstruction, 
visualization of collapse sites, and volumetric analysis of 
airway changes. 

Previously, automatic segmentation of the upper airway has 
been applied to 3D computed tomography (CT) and MR 
images. 3D static CT images of the upper airway were 
segmented for volumetric analysis using level-set based 
deformable models [17] and region growing algorithm 
[18][19]. In [3][20] static 3D T2-weighted MR images, were 
segmented using a fuzzy connectedness-based algorithm that 
required 4 min/study. This framework required significant 
operator and processing time, even for short scans. More 
recently, Wagshul et al. used threshold-based segmentation to 
segment and depict 3D upper airway images of tidal breathing 
[11]. Their static 3D and retrospectively gated upper airway 
images had significantly higher contrast to noise ratio and 
reduced artifacts compared to what is seen in real-time 3D UA 
MRI. Additionally, these previous methods were not designed 
for or applied to collapsed airways. 

In this work, we demonstrate visualization of upper airway 
dynamics and detection of natural obstructive apneas during 
sleep.  The key development is a method for semi-automated 
analysis of real-time 3D UA MRI using multi-seeded 3D 
region growing [21]. Region growing was chosen for its 
simplicity to demonstrate a new application where 
segmentation facilitates the workflow of a novel study. 
Multiple-seeds were found to enable more accurate 
segmentation and visualization during collapse events when 
the airway is divided into two (or more) patent sections. We 
narrow the analysis volume to just the pharyngeal airway, and 
propagate seeds from one time frame to the next using the 
observation that the nasal cavity and base of the airway remain 

Fig. 1.  Segmentation Procedure. a) Graphical representation of region of interest (ROI) placement, seed placement, and division of airway into five sections 
for generation of new seeds. b) Flowchart illustrating the entire procedure.  An ROI is manually selected  (red), two seeds are placed within the ROI and a 
threshold (Torig) is determined based on the first frame. The first frame is segmented using automatic region growing (green). The threshold is increased by ∆T 
and segmentation is repeated if volume of airway is less than the segmented volume using original threshold plus ∆V, collapse is detected and threshold is less 
than original threshold plus 10∆T. Two new seeds for subsequent frames are generated using segmented masks.  
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patent at all times.  We demonstrate that this approach 
performs as well as manual segmentation. Errors were 
comparable to intra-operator variability of manual 
segmentation.  We also show that it enables analysis of long 
scans and visualization of important factors in an MRI sleep 
study, such as the time, site, and extent of airway collapse. 

II. METHODS 

A. Segmentation and Analysis  
Fig. 1 illustrates the proposed segmentation approach. A 

reference frame is selected to be the first frame with a visibly 
patent airway in each data set. A region of interest (ROI) is 
selected from the hard palate to the epiglottis in the mid-
sagittal slice of the reference frame as shown in Fig. 1a.  Two 
seeds are placed within the mid-sagittal slice, one in the 
nasopharyngeal airway and one in the oropharyngeal airway 
as shown in Fig. 1a. The first frame is segmented using multi-
seeded 3D region growing [21]. The threshold is manually set 
to separate air and tissue signals in the ROI, which was 
between 7th-15th percentiles of pixel intensities for all cases 
studied. Seeds for subsequent frames are generated 
automatically by dividing segmented airway into five sections 
and placing two new seeds for the next time frame at the 
centroid of the sub sections with the largest volume, as 
illustrated in Fig. 1a. The two initial seeds plus the two new 
seeds are used for segmentation.  This process repeats until all 
frames are processed. Segmentation is performed using an 
open-source implementation of multi-seeded 3D region 
growing [22] in MATLAB (MathWorks Inc., Natick, MA).  

The images have non-zero intensity in the airway, due to 
noise, which results in under-estimation of the patent airway.  
This could also result in false positive collapse detection if the 
threshold is set too low. Therefore the initial threshold is 
increased by an operator-determined ∆T and segmentation is 
repeated with an updated threshold if two conditions are met: 
1) if a collapse is detected, and 2) if the threshold is less than 
the original threshold plus 10∆T. This process is repeated until 
one of the conditions becomes false or the volume of the mask 
with updated threshold is greater than the original volume plus 
1 cm3. We found that this significantly improved collapse 
detection. If the collapse is detected for all thresholds the mask 
from the original threshold is used. However, if the collapse is 
resolved by updating the threshold the mask from the updated 
threshold value is saved and is used to generate seeds for the 
subsequent frame.  

When the airway is patent, region growing results in a 
single contiguous region. Airway collapse is therefore 
detected based on the existence of two (or more) disconnected 
regions that were larger than 0.2 cm3. This threshold excludes 
small-disconnected regions that are not part of the airway. The 
binary airway collapse waveform can be displayed alongside 
other physiological recordings. 3D renderings of airway were 
generated for frames before, during, and after collapse events, 
using MATLAB.  

B. Evaluations 
Dynamic 3D upper airway data was analyzed from 3D RT-

MRI sleep studies in ten adolescents with sleep-disordered 
breathing, described in Table I.  Our Institutional Review 

Board approved the imaging protocol, and written informed 
consent was provided.  Images were acquired using a 3DFT 
gradient echo sequence with golden angle radial view order, 
and constrained reconstruction, as described by Kim et al. 
[15], [16].  

Relevant imaging parameters for short scans are: scan time 
2 min, field of view (FOV) 16.0×12.8×6.4 cm3; spatial 
resolution 1.6×1.6×1.6 mm3, echo time (TE) 1.74 ms, and 
repetition time (TR) 3.88 ms. Relevant imaging parameters for 
long scans are: scan time 14-18 min, field of view (FOV) 
20.0×16.0×8.0 cm3; spatial resolution 2.0×2.0×2.0 mm3, echo 
time (TE) 1.72 ms and repetition time (TR) 6.02 ms. The body 
coil was used for radio frequency (RF) transmission, and a six-
channel carotid coil was used for signal reception.  

Respiratory effort, heart rate, oxygen saturation, and mask 
pressure were recorded during the MRI scan as described by 
Kim et al. [15]. Two respiratory transducers placed over the 
abdomen were used to measure respiratory effort. An optical 
fingertip plethysmograph (Biopac Inc., Goleta, CA) was used 
to measure oxygen saturation and heart rate. A facial mask 
(Hans Rudolph Inc., Kansas City, MO) along with a Validyne 
pressure transducer (Validyne Engineering Inc., Northridge, 
CA) was used to measure airway pressure at the mouth and for 
airway occlusion test. 
  Segmentation accuracy was evaluated using manual 
segmentation as the gold standard.  Ten datasets were chosen 
from the work of Kim et al. [15], [16].These provided a range 
of expected data quality for this nascent imaging approach.  In 
five patients (Patients # 1, 2, 8, 9, and 10), inspiration was 
blocked for three breaths as part of an airway compliance test 
[13].  In all other patients, the scan was performed during free 
breathing. Each dynamic 3D data set was segmented using 
semi-automated 3D pharyngeal airway segmentation. Twelve 
frames were selected and manually segmented twice by one 
MR physicist with knowledge of the upper airway anatomy.  

Dice coefficient analysis [23] was used to compare the 
semi-automatic segmentations with manual segmentations, 
and to evaluate the intra-operator variability of manual 
segmentation. Manual segmentations were performed using a 
commercial package (Slice-o-Matic, TomoVision Inc. Magog, 
Canada). For two segmented volumes A and B, the DC is 
given by (2|𝐴 + 𝐵|)/(|𝐴| + |𝐵|) and quantifies the amount of 
overlap between the two sets. The DC ranges from 0 to 1, 
where 1 signifies exact overlap between A and B, and 0 
signifies no overlap.   A DC of 0.85 or greater is considered to 
be “very good”.  

DC analysis was also used to evaluate differences in 
estimated airway clearance between manual and semi-
automatic segmentations at four different axial cross-sections 
of the UA. The locations were chosen to be at the level of the 
uvula, because that is where the airway is typically the 
narrowest and is where we have observed the largest number 
of collapse events in our patient cohort. 

Sensitivity of the method to seed selection was also 
evaluated; using 10 different pairs of seed points to segment 
each data set with semi automated segmentation. DC analysis 
was used to compare the different semi-automated 
segmentations.  
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Five long datasets during natural sleep, each 18-22 min and 
1500-1800 frames, were selected to demonstrate visualization 
of airway dynamics and detection of collapse events. These 
particular datasets were more likely to contain central and 
obstructive apnea events. A clinical sleep expert identified 
these events using physiological signals acquired during the 
MRI scan. Obstructive apneas were identified based on the 
presence of respiratory effort detected by respiratory bellows 
with no change in mask pressure measured at the mouth. 
Central apneas were identified by the absence of respiratory 
effort coincident with no change in mask pressure. The timing 
of obstructive events was compared to the events detected by 
automatic collapse detection.   

III.  RESULTS 
 Semi-automated segmentation of 2 minutes of data (240 

frames) required 2 minutes of operator time, and 20 minutes of 
CPU time (Intel Xeon 2.93Ghz, 192 GB RAM). Manual 
segmentation of 6 seconds of data (12 frames) required 
roughly 2 hours (10min/frame).  Table II contains Dice 
Coefficients and Table I contains baseline subject information, 
sleep-disordered breathing phenotype, and MRI analysis of 
airway collapse. DC for manual vs. manual was comparable to 
DC for manual vs. automatic for both the ROI and airway 
clearance at 4 slices around the uvula.  The accuracy of semi- 
automated segmentation was comparable to the intra-operator 
variability of manual segmentation. The method was not 
sensitive to initial seed placement resulting in DC of 1 for all 
the semi-automated segmentations performed using different 
initial seeds. 

The DC values for manual vs. automatic segmentation were 
low (<0.85) for 22% (9/40) of 2D slices.  These slices had 
narrow airway clearance. Because the segmented airway 
consisted of less than 175 pixels in these slices, very small 
segmentation errors result in lower DC values. 
 Natural obstructive events were observed in two Patient’s 
scan data (patient 3 and 10 from Table I).   Patient 10 only 
showed 1 naturally occurring obstructive event. Patient 3 was 

used to test automatic collapse detection because he showed 
the most number of naturally occurring collapses. Of the 18 
obstructive events, 15 were detected automatically. Of the 
three cases where obstructive events were not detected, two 
suffered from poor image quality and one showed a narrowed 
but patent airway.  In addition, there were 9 false positives. A 
series of consecutive frames showing collapse was regarded as 
an event. False positive events had at-most 4 frames of 
consecutive collapse compared to 15 or more frames in actual 
events with the exception of two true events that had 4 and 8 
consecutive frames showing collapse due to poor image 
quality.  
 Fig. 2 contains surface renderings illustrating upper airway 
dynamics during one collapse from validation Subject 1. Such 
anatomical information along with other physiological signals 
can be used for treatment planning and to monitor treatment 
outcome. The information from the plots of airway collapse 
also makes it easier to navigate to frames that show airway 
collapse and allows for more efficient data processing. In Fig. 
2 collapses were observed in three frames for manual 
segmentation 1 and in two frames for manual segmentation 2. 
This was due to the difficulty in segmenting airway with high 
signal intensity that made it difficult for the operator to decide  
if a particular region is part of the airway or tissue.  

 Fig. 3 and Fig. 4 show data from patients experiencing a 
natural central apneic event, and a natural mixed apneic event, 

Patient Info Polysomnography 
# Age/Sex BMI oAHI* Phenotype 
1 14/F 45.0 0.3 Primary snorer 
2 16/M 30.0 0.2 High Arousal 

3 14/M 23.7 4.0 Sleep related hypoxemia / 
hypoventilation 

4 17/F 26.9 1.7 Primary snorer 

5 14/F 30.2 2.5 Sleep related hypoxemia / 
hypoventilation 

6 14/F 32.8 1.1 Primary snorer 

7 17/F 32.0 2.0 Sleep related hypoxemia / 
hypoventilation 

8 20/F 24.9 4.0 Sleep related hypoxemia / 
hypoventilation 

9 13/F 32.0 70 Obstructive sleep apnea 
10 15/M 29.2 0.7 Primary snorer 

Table I: Patient information.  * OAHI= Obstructive apnea hypopnea index 
(i.e. # of events per hour) measured from an overnight polysomnography. 
The use case columns show that subject 1 and 2 were used for dice 
coefficient analysis and subject 3 was used for testing the accuracy of 
collapse detection. 

# Manual vs. Manual Manual vs. Automated 
1 0.95 0.87, 0.87 
2 0.94 0.84, 0.85 
3 0.97 0.93,0.94 
4 0.97 0.87,0.86 
5 0.89 0.86,0.91 
6 0.91 0.92,0.94 
7 0.94 0.91,0.91 
8 0.94 0.92,0.89 
9 0.95 0.93,0.94 
10 0.94 0.91,0.93 

Table II: Dice coefficient comparison of semi-automatic and manual 
segmentation. A DC of 0.85 or greater indicates good agreement. First 
column contains Patient numbers from Table I.  

# Manual vs. Manual Manual vs. Automated 
1 0.88,0.93,0.95,0.96 0.72,0.86,0.89,0.88 
2 0.91,0.84,0.96,0.96 0.74,0.63,0.89,0.91 
3 0.98,0.97, 0.98,0.95 0.95,0.93,0.94,0.90 
4 0.95,0.96,0.97,0.96 0.79,0.86,0.89,0.83 
5 0.87,0.86,0.91,0.91 0.85,0.71,0.81,0.92 
6 0.88,0.90,0.95,0.93 0.92,0.93,0.96,0.94 
7 0.93,0.93,0.92,0.97 0.87,0.85,0.87,0.94 
8 0.93,0.91,0.93,0.96 0.88,0.81,0.83,0.93 
9 0.97,0.94,0.91,0.91 0.95,0.92,0.89,0.90 

10 0.96,0.96,0.95,0.93 0.94,0.94,0.94,0.91 

Table III: Dice coefficient comparison of airway clearance between semi-
automated and manual segmentation using four axial slices. DC values for 
all four slices are shown. In column 3 the average of DC for semi-
automated and the two manual segmentation is shown. A DC of 0.85 or 
greater indicates good agreement. First column contains Patient numbers 
from Table I.  
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respectively. Mixed apneic event consists of a central apnea 
followed by an obstructive apnea in this case. The volume plot 
and binary collapse plot are displayed along with 
physiological signals to simplify the process of identifying and 
classifying events. Obstructive events are identified based on 
the presence of respiratory effort detected by respiratory 
bellows with no change in mask pressure measured at the 
mouth. Central events were identified by the absence of 
respiratory effort coincident with no change in mask pressure. 
In Fig. 3, the decrease in airway volume, flat respiratory effort 
(black arrows), zero mask pressure and subsequent decrease in 
oxygen saturation indicate a central apneic event that resulted 
in airway narrowing, shown by the volume plot and 
visualizations. In Fig. 4, flat respiratory effort and zero mask 
pressure indicate a central apnea followed by fluctuations in 
respiratory effort in the abdomen, zero mask pressure and the 
binary collapse plot (black arrows) indicating an obstructive 
apneic event. The binary collapse plot makes it easier to 
navigate to collapse events and the visualizations allow us to 
observe the precise site and extent of collapse.  

IV.  DISCUSSION 
  The proposed semi-automated segmentation drastically 
reduces the processing time of 3D real-time upper airway 
MRI.  It takes a trained operator approximately 10 min/frame 
to perform manual segmentation, not including training time. 
Comparatively, semi-automated segmentation requires just 2 
min of operator time, and 5 seconds of CPU time per frame.  
For a typical dataset containing 1800 frames, manual 
segmentation would require 100+ hours, while semi-
automated segmentation requires 2 minutes of manual 
adjustments in the initial frame and 3 hours of CPU time in 
subsequent frames.   

 The specific data acquisition and reconstruction methods 
used in this work are nascent and evolving. Optimal k-space 
sampling patterns and reconstruction constraints have not yet 
been determined, and may improve the underlying image 
quality.  The current images do have residual signal in the 

airway, suffer from coil roll off in the head-foot direction, 
suffer from motion artifacts in frames acquired during arousal 
following an apneic event and appear spatially blurred in some 
frames. These quality issues make automated segmentation 
with high accuracy a challenging problem. As the acquisition 
and reconstruction methods are improved so will the accuracy 
of segmentation due to the improvement in image quality. 

Rapid involuntary motion such as that following an arousal 
after and apneic event or from swallowing will result in 
motion artifacts. We did not address these artifacts in the 
present study, however they may be resolved by identification 
and rejection of some temporal frames, or by incorporating 
non-rigid motion correction into the MRI acquisition and 
reconstruction methods.  

Another limitation of the RT-MRI approach is that the 
scanning itself is loud and subjects have reported difficulty 
falling asleep. Currently, the sleep state is determined by 
manual inspection of heart rate, mask pressure, oxygen 
saturation, and respiratory signals by experienced pediatric 
pulmonologists. A sustained regular heart rate and breathing 
pattern, free of artifact, serve as a surrogate for identifying 
sleep.  Arousal from sleep and wakefulness were assumed 
with any variability in the heart rate, irregular respiratory 
breath intervals and/or amplitude, and/or movement artifact 
contaminating the signals. Manual inspection is subjective and 
not very accurate where as EEG is the best way to objectively 
assess sleep state.  Due to difficulty using (EEG) in an MRI 
scanner it was not used in the current protocol. Since sleep 
state was determined retrospectively, the scan was completed 
as is even if the patient did not fall asleep or woke up in the 
middle of the scan. Efforts are being made to use 
electroencephalogram (EEG) in an MRI scanner. Knowledge 
of sleep state will enable us to determine the duration of our 
scan to allow subjects to attain a sufficiently deep level of 
sleep in the MR scanner for future studies. Efforts are also 
being made to reduce the acoustic noise from the scanner to 
help subjects fall asleep more easily because in many OSA 
patients, obstructive events tend to occur more frequently 
during rapid eye movement sleep.  
 This work has demonstrated the feasibility of semi-
automated airway segmentation in dynamic 3D airway MRI 
and there is much room for improvement. The present 
segmentation method requires manual selection of ROI, seeds 
and the intensity threshold. Manual selection is subjective and 
prone to intra- and inter- observer variability. Therefore, 
further investigation is needed to make this algorithm fully 
automated and to explore best methods for segmentation. 
 Recent advances in automated landmark detection 
algorithms may help reduce variability by automating ROI and 
seed selection. Recently Wang et al. presented an evaluation 
and comparison of four robust anatomical landmark detection 
methods for cephalometry 2D X-ray images [24]. These 
methods rely on sophisticated image analysis and pattern-
recognition principles. They all require annotated training 
datasets to train the landmark detectors before use in non-
labeled datasets [25]–[28]. Automatic land-mark detection has 
also been used for automated seed placement for colon 
segmentation using an automated heuristic approach that 
doesn’t rely on training datasets but used knowledge of 
anatomy for seed placement [29]. This approach was  

 
Fig. 2. Visualization of a retropalatal airway collapse event during natural 
sleep.  a) Automatic segmentation b) manual segmentation #1 and c) 
manual segmentation #2.The manual segmentations differ in the number of 
collapse frames detected due to low contrast to noise ratio (CNR) in the 
image data from  patient 1 .The number of detected collapse frames in 
automatic segmentation are comparable to manual segmentations. 
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specifically designed for colon segmentation and may not be 
easily translated to 3D upper airway data. In [30] an 
automated segmentation plus landmark detection approach is 
presented for 2D upper airway MR images. Most of these 
methods were developed for high-resolution 2D images with 
much higher CNR than in our datasets. However, they may 
still be applicable to dynamic 3D upper airway images 
presented in this work and allow for further automation of the 
segmentation algorithm presented here. 

Furthermore, more sophisticated methods may improve the 
false positive rate.  For example, in some frames from the long 
scan of Subject 1 the airway boundaries were not well 
preserved and resulted in over-segmentation. The segmented 
region grew to include the tissue that had lower signal 
intensity. Such errors might be resolved using region-growing 
algorithms that detect breach of periphery as it grows, and 
ensures that segmented region stays within the airway. A 
technique that addressed this issue has been previously 
demonstrated in brain lesion segmentation [31]. 

The 3D renderings generated from our segmentation 
method can be used to study the dynamics of airflow in the 
upper airway and its interaction with airway walls during 
events. Current studies have used static MRI to characterize 
UA using computational modeling and fluid structure 
interactions [32]. However, static MRI lacks information 
about dynamics of UA during collapse. This information can 
be provided by 3D RT-MRI and may help with improved 
characterization of UA using computational modeling and  

fluid structure interactions 

V. CONCLUSION 
We have demonstrated a novel and simple semi-automated 

segmentation approach for dynamic 3D MRI of the 
pharyngeal airway. The proposed method has shown very 
good agreement with manual segmentation.  This approach, 
for the first time, enables time-efficient identification of 
collapse events, and enables visualization of the pharyngeal 
airway dynamics throughout all events. The segmented 
dynamic MR data can provide previously unavailable 
anatomical landmarks for clinical interventions such as 
surgery or oral appliances in the treatment of OSA, or for 
patient-specific modeling of the airway collapse pattern  
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Fig. 3.  Example use from a 14/M with central apnea event. Waveforms 
shown are (a) abdominal respiratory effort, (b) oxygen saturation, (c) heart 
rate, (d) mask pressure, (e) normalized volume (f) collapse and (g) 3D 
visualizations. The first four a-d were simultaneously measured during an 
MRI scan, and e-g were displayed based on calculations from segmented 
masks using the proposed approach. The light blue background in (a)-(e) 
highlights the durations of the central apneas. The black arrows indicate flat 
bellow signal, zero mask pressure and the drop in volume. The apneas are 
followed by drop in oxygen saturation indicated by the green arrows. The 
colored lines in f) represent times when the visualizations of UA were 
generated. The red arrow in visualizations points to site of airway narrowing 
during the apneic event. In f) black indicates a patent airway. 
 

 
Fig. 4.  Example use from a 14/M with obstructive apnea event. Waveforms 
shown are (a) abdominal respiratory effort, (b) oxygen saturation, (c) heart 
rate, (d) mask pressure, (e) normalized volume (f) collapse and (g) 3D 
visualizations. The first four a-d were simultaneously measured during an 
MRI scan and e-g are calculated from segmented masks using the proposed 
approach with 3D RT-MRI. The blue background highlights the length of the 
mixed (central and obstructive) apneas. The black arrows indicate change in 
respiratory effort, flat mask pressure and the white collapse plot. The mixed 
apnea is followed by a drop in oxygen saturation indicated by the green arrow 
and an increase in heart rate indicated by the brown arrow. The orange arrows 
indicate breathing evident from changes in respiratory effort and mask 
pressure. The colored lines on f) represent times when the visualizations of 
UA were generated. The red arrows in visualization point to site of airway 
collapse during the apneic event. In f) black indicates a patent airway and 
white indicates a collapsed airway. 
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