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Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE)
MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and
constrained reconstruction with multiple sparsity constraints.
Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed
20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimen-
sions 0.9×1.3×7.0 mm3, FOV 22×22×4.2 cm3, and the experimental DCE-MRI had voxel dimen-
sions 0.9×0.9×1.9 mm3, and broader coverage 22×22×19 cm3. Temporal resolution was 5 s for
both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively
evaluated by two radiologists.
Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of
the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage.
Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the
conventional clinical scans.
Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with
higher spatial resolution and coverage than currently available approaches. These advantages may
allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of
large lesions or multiple lesions spread throughout the brain. C 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1118/1.4944736]
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1. INTRODUCTION

T1-weighted dynamic contrast-enhanced (DCE)-MRI is a
valuable albeit still evolving technique for mapping the spatial
distribution of brain vascular parameters such as perfusion,
permeability, and blood volume.1,2 It employs serial T1-
weighted imaging before, during, and after a bolus injection
of a gadolinium-based contrast agent (GBCA). Changes in
GBCA concentration are derived from changes in signal
intensity, then regressed to quantify pharmacokinetic (PK)
parameters such as K trans (volume transfer constant), vp
(fractional plasma volume), and ve (fractional extravascular
extracellular space volume).3,4 DCE-MRI is used for quantita-
tive assessment of brain tumors,5–7 multiple sclerosis lesions,8

and Alzheimer’s disease,9 and other neurological disorders
that involve blood–brain barrier (BBB) disruption. DCE-MRI
is also used in clinical oncologic imaging for assessment of
breast10 and prostate11 cancer. In brain tumor evaluation, BBB
permeability is typically characterized by K trans.4 While its
interpretation may be complex, with some dependency on
blood flow, K trans correlates with tumor severity and may be
a useful biomarker for monitoring therapeutic response and
outcome.4,8,12–15

Despite its usefulness, conventional clinical DCE-MRI is
limited by suboptimal image acquisition that results in low
spatial/temporal resolution and insufficient spatial coverage.
Low temporal resolution has also been linked to poor
reproducibility of PK parameters.16 A typical clinical DCE
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scan provides 2–30 s temporal resolution to detect signal
intensity changes resulting from contrast agent perfusion.1,17

As a result, the in-plane voxel dimensions usually exceed
1 mm2 and the slices are often greater than 5 mm thick.
The spatial coverage is often inadequate to cover the known
pathology, such as in the setting of multiple metastatic lesions.

Recently, compressed sensing (CS) theory has inspired a
wide array of new data acquisition and constrained recon-
struction strategies that aim to reconstruct images from
sparsely undersampled data.18 CS is particularly well suited for
dynamic imaging, which can exploit the redundancy of infor-
mation in the temporal dimension, either through dictionary-
learning19,20 or high-pass filtering.21,22 A combination of
parallel imaging23 (PI) and CS has been shown to greatly
accelerate the data acquisition, while achieving significantly
higher spatiotemporal resolution and large spatial coverage
with only slight image quality penalties.24–26

Several groups, including ours, have employed PI-CS
techniques to improve DCE imaging. Zhang et al.27 em-
ployed a locally low-rank constraint in combination with
parallel imaging to achieve up to 19× acceleration rate in
pediatric patients. Wang et al.28 used a reference image-
based compressed sensing and achieved acceleration factor
of 10×without degrading spatial resolution. Feng et al.26 used
compressed sensing, parallel imaging, and golden-angle radial
sampling to achieve fast and flexible DCE-MRI. Rosenkrantz
et al.17 examined 20 prostate cancer patients using a similar
scheme to evaluate the results from constrained reconstruction
against conventional DCE-MRI.

Several groups have also utilized undersampling and
constrained reconstruction techniques to accelerate contrast-
enhanced (CE) magnetic resonance angiography (MRA). CE-
MRA is particularly amenable to this approach because
subtraction angiograms are sparse in the image domain.
Barger et al.29 used undersampled 3D projection recon-
struction trajectories and a “tornado” view-sharing scheme
to achieve isotropic resolution, broad coverage, and 4 s
temporal resolution. The typical aliasing when using un-
dersampling is mitigated by the high-contrast properties in
MRA. Haider et al.30 used a Cartesian radial technique in
combination with 2D SENSE, partial Fourier, and view-
sharing to achieve 1–2 mm isotropic resolution and subsecond
temporal resolution. With emerging CS techniques, Trzasko
et al.31 demonstrated reduced noise and artifacts level in
Cartesian radial sampling MRA by utilizing a sparsity-
driven nonconvex CS method, and Lee et al.32 achieved
1-mm isotropic resolution, 1.1 s frame rate (corresponding
to an acceleration factor of >100) with a CS based GraDeS
algorithm. In CE-MRA, high spatiotemporal resolution and
broad coverage are achieved by exploiting high image contrast
and a high degree of image domain sparsity.

Accelerating DCE-MRI for the purpose of pharmacokinetic
modeling is more challenging than for CE-MRA since the
reconstruction is not spatially sparse and PK modeling is per-
formed based on every signal containing voxel. Furthermore,
reconstruction fidelity must be very high for accurate modeling
whereas moderate error in visually assessed angiograms is
often tolerable. Finally, the dynamic range of contrast-induced

signal change is smaller in tissue than in vessels, enabling
subtle compression artifacts to translate into noticeable errors
in tissue parameters. The novelty of our proposed approach
is that multiple sparsity constraints are employed in different
sparse transform domains, each with low weight,33 mitigating
biased artifacts producing from one heavy constraint. We have
been able to achieve the highest acceleration rate reported in
the literature to date, 36×, with excellent image quality. This
enabled near isotropic voxel dimensions with whole-brain
coverage for DCE-MRI.

Despite the promise of PI-CS methods, these techniques
are poorly validated. Most validation has been done by
retrospectively discarding data from fully sampled data sets or
using phantom simulation. Both approaches provided ground
truth, but are imperfect due to unrealistic data acquisition
or anatomical features. Prospectively undersampled studies
demonstrate the potential of the method, but lack ground truth
images and have not been well validated. In this work, we
present the first, to the best of our knowledge, prospective
clinical evaluation of accelerated DCE-MRI using constrained
reconstruction in brain tumor patients.

2. MATERIALS AND METHODS
2.A. High-resolution whole-brain DCE-MRI

The experimental DCE-MRI scan was based on a conven-
tional Cartesian T1-weighted 3D spoiled fast gradient (SPGR)
echo sequence. The flip angle was 15◦, TE was 2 ms,
and TR was 6 ms. The phase encoding order was altered
to follow a Cartesian-grid golden-angle radial scheme,34–36

which acquired ky–kz phase encodes following golden-angle
rotating radial spokes. The frequency encoding direction kx

was fully sampled. Cartesian SPGR scans with flip angles of
2◦, 5◦, and 10◦ were performed sequentially for DESPOT1
(Ref. 37) T1 mapping prior to both the conventional and
experimental DCE scans.

The Cartesian golden-angle radial sampling scheme pro-
vides incoherent k-space sampling, even at very high acceler-
ation rates, where only a few spokes are presented within one
time frame.17,26 This approach provides comparable image
quality as Poisson-ellipse sampling, which has been used in
similar l1-based reconstruction.36 All samples fall on a 3DFT
Cartesian grid, therefore the fast Fourier transform (FFT)
operator can be directly applied. We have implemented this
sampling scheme on a clinical scanner (3T GE Signa Excite
HDx scanner), where the phase encode order table can be
generated in response to operator input. The implementation
is straightforward, since no additional modification of the
existing gradient waveform is needed.38

The undersampled raw data were reconstructed using a
sparse SENSE reconstruction scheme that utilizes multiple
l1-norm constraints with very low weights, as described in
Ref. 33. These sparsity penalties were chosen based on
expected spatial and temporal characteristics of DCE-MRI
images. Reconstruction involved solving the minimization
problem in Eq. (1), where the final image, x, remains consistent
with the acquired data, y , yet is sparse in the temporal finite
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difference (V ) domain, the spatial “db2” wavelet domain (Ψ),
and the spatial total variation (TV) domain. The image is
related to the acquired data using known coil sensitivities (S)
and the undersampling Fourier transform Fu. Coil sensitivity
maps were generated by computing a density compensated
average of all k-space data acquired at all DCE time points.
This resulted in high-SNR time-averaged 3D k-space dataset
that was fully sampled. Individual coil maps were then
computed in the standard way, by dividing each individual
coil image by the root sum-of-squares image,23

x = argmin
x

∥y−FuSx∥2
2+λ1∥V x∥1+λ2∥TVx∥1+λ3∥Ψx∥1.

(1)

This optimization problem is solved by an efficient
augmented-Lagrangian method, alternating direction method
of multipliers (ADMM), which performs variable splitting
twice.39 This algorithm is one of the many state-of-the-art
algorithms to solve these l1-constrained minimization prob-
lems.18,24 This particular algorithm was chosen because it pro-
vides fast convergence.39–41 Reconstruction was implemented
in  (Mathworks, Natick, MA) and run on a Linux
workstation (24 core 2.5 GHz, 128GB RAM). A detailed
description of this algorithm is included in Appendix A.

In this study, regularization penalties were chosen empiri-
cally based on retrospective studies. A fully sampled DCE data
set was retrospectively undersampled at the same acceleration
rate as our prospective data, then repeatedly reconstructed
with a range of constraint penalties. Normalized root Mean
squared error (nRMSE) was calculated between the fully
sampled and reconstructed data sets. Penalties were chosen
to maintain near-minimal nRMSE, yet provide traction during
reconstruction—essentially locating the corner point of the
l-curve.42 We employed penalties of 0.01, 0.0001, and
0.0001 for temporal finite difference, spatial TV, and spatial
wavelet, respectively, for all subsequent reconstructions. In
retrospective studies, we found that reconstruction converged
well within 100 iterations. We therefore allowed a maximum
of 100 iterations in this prospective study, to provide control
of the maximum reconstruction time.

2.B. Experimental methods

Fifteen brain tumor patients were recruited from three
of our affiliated sites. Informed consent was obtained from
patients prior to MRI scan. Our Institutional Review Board
approved this study and all procedures.

MRI scans were performed on a clinical 3T scanner
(HDxt, GE Healthcare, Waukesha, WI) with an eight-channel
head coil. Two DCE scans were performed: a standard
(“conventional”) scan using the vendor supplied sequence
and our highly accelerated (“experimental”) scan. Both DCE
acquisitions used a 3D SPGR sequence. Prior to each scan,
T1 maps were acquired using variable flip angle DESPOT1
method.37 The standard clinical postcontrast T1 weighted
scans (Coronal T1-weighted FSPGR sequence, 1.0 mm3

isotropic resolution, 22×22×20 cm3 FOV) were used as the
reference for lesion identification.43,44

T I. Comprehensive MRI protocol for a brain tumor patient in our study
with a conventional-then-experimental DCE MRI order. Conventional and
experimental DCE scans are in bold and separated by roughly 20 min. The
conventional and experimental scans were reversed for the last two patients.

Duration (min:s) Sequence

1:00 Localization and SENSE calibration
4:00 Precontrast axial T1w FSPGR
5:00 Precontrast axial T2w FSE
5:00 Precontrast axial FLAIR
0:45 T1 mapping
4:08 Conventional DCE
15:00 Diffusion tensor imaging
0:45 T1 mapping
5:29 Experimental DCE
2:00 Postcontrast axial T1w FSPGR
3:00 Postcontrast coronal T1w FSPGR

<50:00 Total

Table I shows the conventional-then-experimental imaging
protocol, which required less than 50 min. The contrast
agent, Gadobenate dimeglumine (MultiHance Bracco, Inc.)
was administered with a dose of 0.05 mmol/kg, followed by a
20 ml saline flush in the left arm by intravenous injection for
each scan (this results in a total of 0.1 mmol/kg which would
be the standard dose for a DCE MRI with contrast). The two
DCE scans were separated by approximately 20 min, resulting
in residual GBCA present in the second scan. This residue
results in underestimation of K trans values for the second scan,
as explained in Appendix B.

Conventional-then-experimental protocols were performed
in the first 13 patients; for the last two cases, we switched the
order of the conventional and experimental scans and created
an experimental-then-conventional protocol. This was for the
purpose of verifying that K trans underestimation in the second
scan was due to the scan order and residual GBCA and not
due to the imaging methods.

Table II lists acquisition parameters for the two DCE
scans. The experimental scan achieved much smaller voxel
dimensions and whole-brain coverage, while maintaining the
same temporal resolution as the conventional scan. A net
acceleration factor of 30×was achieved. All 15 brain scans had
the same field-of-view, matrix size, voxel dimensions, scan
time, and phase encode order. K-t space was undersampled
in the exact same fashion for all subjects. The injection
delay for the experimental method was 60 s, compared to
20 s for the conventional method, in order to allow time
for fully sampling of 25% of phase encodes prior to contrast
arrival.

2.C. Comparisons/evaluation

The conventional and experimental DCE-MRI scans were
registered based on the peak-contrast images using  im-
age registration toolbox. As the experimental scan had whole-
brain coverage, slices within the FOV of the conventional scan
were located by registration. For fair evaluation, three adjacent

Medical Physics, Vol. 43, No. 5, May 2016



2016 Guo et al.: Clinical evaluation of accelerated DCE-MRI 2016

T II. Scan parameters for the standard conventional and experimental high-resolution whole-brain DCE MRI
scans. The experimented scan slice thickness is less than one third of that of conventional scan, and the slice
number is 17× greater than that of conventional scan. This enables a whole-brain near-isotropic coverage of the
experimental scan while keeping the same temporal resolution.

Conventional Experimental

TR/TE (ms) 6/2 6/2
Flip angle (deg) 15 15
Matrix size 256×186×6 256×256×100
FOV (cm3) 22×22×4.2 22×22×19
Voxel dimensions (mm3) 0.93×1.3×7 0.93×0.93×1.9
Temporal resolution (s) 5 5
Injection delay (s) 20 60
Total scan time (min:s) 4:08 5:29
Time frames 50 61
Sampling pattern Cartesian 3DFT linear order Cartesian 3DFT golden-angle radial order
Acceleration factor 2× 30×

slices of the high-resolution experimental scan were averaged
to match the slice thickness of the conventional scan. Then
K trans maps were computed using the Patlak analysis3,45,46

and a population-averaged analytic arterial input function
(AIF).47

Quantitative evaluation was performed using the K trans

histogram within radiologist-defined ROI.15,48–50 Under the
guidance of an experienced neuroradiologist (20 yr of
experience), tight ROIs were drawn on K trans maps to included
the highest K trans values. The maximum K trans values were
calculated for both scans and compared.

Qualitative evaluation was performed using radiologists’
rating. Two experienced neuroradiologists (10 and 20 yr of
experience, respectively) from our institution reviewed and
scored the images. For each subject, three types of images
were shown for the conventional and experimental scans (a
total of six image sets): (1) time-resolved images of one
slice through the tumor (three slices averaged in experimental
scan), (2) postcontrast-enhanced images (no slice average
for experimental scan), and (3) BBB permeability K trans

maps. Radiologists were blinded to the acquisition type
(conventional or experimental), and the presentation order
for every scan was randomized. A 4-point Likert scale was
used to quantify the general image quality, where 3 = good,
2= average, 1= poor, = nondiagnostic

In the second round of qualitative evaluation, the same
Neuroradiologists were shown the full resolution conventional
and experimental DCE-MRI results and were asked to
evaluate three subcategories of image quality: (1) SNR, which
incorporates the visual appearance of noise, (2) apparent
spatial resolution, which incorporates sharpness of the images,
and (3) conspicuity of tumor enhancement, which incorporates
the detectability and sensitivity of contrast enhancement
in the tumor. For each category, readers were asked to
determine if the conventional scan was superior, if the
two were equal, or if the experimental scan was superior.
Conventional and experimental scan images (postcontrast
images, time-resolved images, and K trans maps) were shown
to the radiologists, who were not blinded to the scan
type.

3. RESULTS
3.A. Experiment results

Table III contains the demographic and clinical information
for the 15 patients who were included in the data analysis.
All experimental data sets were reconstructed using the same
empirical constraint penalty values [the λ’s in Eq. (1)].
Reconstruction time was roughly 8 h/dataset.

Figure 1 contains typical postcontrast-enhanced DCE-
MRI images from two subjects, one with a large 6 cm
glioblastoma and the other with multiple metastatic melanoma
tumors scattered throughout the entire brain. The experimental
approach was able to provide detailed depiction of the entire
tumor body and tumor boundary, and capture all the possible
small lesions (14 in total) in the whole coverage of the brain
(see arrows). The tumor boundary was clearly visualized in any
scan plane, and small, scattered lesions were easily identified
in coronal/sagittal reformats. Conversely, the conventional
scan provided limited spatial coverage (only 4 lesions were

T III. Patient demographic and clinical information of the 15 brain tumor
patients participated in the study.

No. Sex Age Symptom Tumor size (cm)a

001 F 46 Glioblastoma 2.4
002 M 71 Glioblastoma 2.3
003 F 76 Meningioma 1.9
004 F 53 Metastasis 3.4
005 M 26 Astrocytoma 1.6
006 M 77 Meningioma 0.8
007 M 72 Metastatic melanoma 1.0
008 M 65 Glioblastoma 6.0
009 M 71 Glioblastoma 1.5
010 F 65 Metastatic ovarian cancer 1.3
011 F 38 Glioblastoma 0.5
012 F 72 Meningioma 1.4
013 F 22 Glioblastoma 2.4
014 F 78 Metastatic melanoma 1.6
015 F 59 Meningioma 3.9

aTumor size was measured by the longest diameter in the postcontrast T1w images.
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F. 1. Final DCE-MRI time frames from two patients illustrating the volume coverage of [(a) and (c)] experimental and [(b) and (d)] conventional scans. (a)
and (b): 65/M patient with a 6 cm glioblastoma tumor (subject #008). Experimental scan (a) shows significantly larger coverage than the spatial coverage of the
conventional scan (b), where on the sagittal and coronal reformats, only a thin slab of brain can be covered. (c) and (d): 78/F patient with metastatic melanoma
(subject #014), only 4 lesions were captured by the clinical scan (d), and all 14 lesions were captured by the experimental scan (c). Note that the conventional
scans show bright signal in the sagittal sinus (red arrows) and other blood vessels due to inflow enhancement which are not present in the experimental scans
because of the whole-brain coverage. This was consistently observed in all subjects. Only three orthogonal slices are shown here. Postcontrast and time-resolved
DCE-MRI videos for case #008 (a) and (b) are available. (Multimedia view) [URL: http://dx.doi.org/10.1118/1.4944736.1] [URL: http://dx.doi.org/10.1118/1.
4944736.2] [URL: http://dx.doi.org/10.1118/1.4944736.3] [URL: http://dx.doi.org/10.1118/1.4944736.4]

captured), and the sagittal and coronal reformats had extremely
low resolution in the slice encoding direction. In all cases, the
experimental scan provided clearer and crisper depictions of
all lesions that were presented.

Another benefit of whole-brain coverage is that it essen-
tially eliminates inflow enhancement artifacts. Figure 1(c)
shows bright signal in the sagittal sinus stemming from inflow
enhancement in a conventional scan where only a 6 cm axial
slab is imaged. This inflow enhancement was consistently
observed in every conventional scan and is strongest in slices
at the edge of the imaging slab. In contrast, Fig. 1(d) shows
that inflow enhancement was not present in the experimental
scans.

Figure 2 demonstrates registered anatomic images
and K trans maps from two other representative patients,
with conventional-then-experimental and experimental-then-
conventional protocols, respectively. Note that the experi-
mental images were blurred in the slice-encoding direction
to match the conventional protocol. Anatomic images yielded
similar quality in the regions of interest. K trans measurements
from the second scan were consistently 42%–66% of that
from the first scan in the ROI of the tumor, regardless of the
scan order. The K trans maps, despite intensity differences (due
to scan order), provided comparable information and superior
image quality based on the radiologists’ ratings, described
below.

Medical Physics, Vol. 43, No. 5, May 2016
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F. 2. Registered anatomic images and K trans maps from two other representative patients. On the left are the registered anatomic images; on the right are
K trans maps. The top row is from patient #013 with a glioblastoma (see arrows) using conventional-then-experimental protocol. The bottom row is from patient
#015 with a meningioma (see arrows) using experimental-then- conventional protocol. Both sets of anatomical images provide comparable features and image
quality, and the K trans maps convey comparable diagnostic information despite intensity differences.

3.B. Quantitative assessment

Figure 3 shows a scatter plot of the maximum K trans

value within manually segmented tumor ROIs between
two DCE-MRI scans. Each pair of scans was performed
using one of three possible orderings: conventional-then-
experimental (blue circle), experimental-then-conventional
(green diamond), and double conventional (red star, see
Appendix B). Although the second scan underestimates
K trans, the two measurements were still highly correlated
with correlation coefficient r = 0.513. The mean difference
between the two scans was 0.036, which corresponds to a
consistent negative bias consistent with contrast residue from
the previous injection.

F. 3. Scatter plot of the maximum K trans in tumor ROIs for the first
and second DCE-MRI scans. Conventional-then-experimental (13 cases),
experimental-then-conventional (2 cases), and double conventional (2 cases,
see Appendix B) are all shown. The correlation coefficient was 0.5132.
The second scan experienced a consistent underestimation of K trans due to
contrast residue (see Appendix B).

3.C. Qualitative assessment

Table IV lists the two radiologists’ ratings of the images.
The Likert scale scores of overall image quality were averaged
across image types and were shown for all 15 patients. The
three subcategories, SNR, apparent resolution, and conspi-
cuity of tumor enhancement, were shown as experimental-
better (denoted by “+”), scans are equal (denoted by “=”),
or conventional-better (denoted by “−”). Both radiologists
consistently rated the experimental scans as higher or equal in
quality to the conventional scans in terms of SNR, effective
resolution, and fine details. The conventional scan was not
deemed superior to the experimental scan in any of the cases
by either radiologists. The radiologists also indicated that
they observed “better white/gray matter contrast,” “improved
resolution and edge sharpness,” “reduced phase-encoding
artifacts,” “reduced noise level,” and “better detection of tumor
with large coverage of the brain,” from the experimental scan
images.

Histograms of the Likert scores for both conventional and
experimental scans are shown in Fig. 4. The scores for the three
image types were combined to show the overall performance
of conventional and experimental scans. Qualitative evaluation
from the experimental scans (mostly 2 and 3) clearly
outperformed that of the conventional scans (mostly 1).

4. DISCUSSION

We have implemented a prospective undersampling and
constrained reconstruction scheme for high-resolution whole-
brain DCE-MRI. We have performed a pilot comparison study
in fifteen brain tumor patients which has demonstrated the
strength of this technique and its potential impact on clinical
DCE-MRI.

Specifically, we have shown that the DCE-MRI with
constrained reconstruction is able to provide much higher

Medical Physics, Vol. 43, No. 5, May 2016
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T IV. Two radiologists’ scores across the 15 patients for conventional and experimental DCE-MRI scans. A 4-
point Likert scale was used to score the overall image quality (3= good, 2= average, 1= poor, 0= nondiagnostic),
and the average of this score was taken for each patient across the three image types. Three subcategories
of image quality (SNR, apparent resolution, conspicuity of tumor enhancement) were scored as follows: +:
experimental-better, =: equal, −: conventional-better (I: Radiologist 1. II: Radiologist 2).

Average Likert score

Conventional Experimental SNR Resolution Conspicuity

NO. I II I II I II I II I II

1 1 1.67 2 1 + + + + + +

2 1 1 2.33 1.67 + + = + + +

3 1 1 2 1.67 + + + + = +

4 1.67 1.33 2.67 1.67 + + + + = +

5 1 1.33 2.33 1.67 + + + + = +

6 1.33 1 2.67 2 + + + + = +

7 1 2.33 3 2 = = = + + +

8 1 1.33 3 2.33 + + + + + +

9 1 1.67 2.33 2 + + = + + +

10 1 1.33 2.33 1.33 + + = + = +

11 1 1.33 3 2 + + + + = +

12 1 1.33 3 2 + + + + = +

13 1 1 3 2.67 + + + + = +

14 1 1 3 2 + + + + = +

15 1 0.67 2 2 + = + + = =

spatiotemporal resolution and whole-brain spatial coverage
compared to current DCE-MRI methods. This is extremely
important when imaging large tumors or patients with multiple
metastatic lesions, which the conventional scans fail to
completely capture due to poor coverage and/or low spatial
resolution. Within the same ROI of the conventional scan,
radiologists’ reported improved quality, comparable or better
diagnostic information in both anatomic images and K trans

maps of the experimental scan.
The experimental images show better SNR, resolution, and

lesion conspicuity, as well as overall image quality score,
despite significant undersampling. This is due to novelty in
the way that raw data are reconstructed. In the conventional
scan, each time frame is reconstructed independent of every

F. 4. Histogram of all conventional and experimental scores combing the
three image types. The statistics of conventional and experimental scans are
1.2±0.6 and 2.2±0.7, respectively.

other time frame. In the experimental scan, each time
frame is undersampled in k-space, but all time frames are
reconstructed in a single step and the mutual information
between time points is leveraged through the use of temporal
constraints. This is precisely the reason that compressed
sensing and constrained reconstruction methods can achieve
high acceleration factors with equivalent or superior image
quality, despite undersampling each time frame. In DCE-
MRI (and similarly, time-resolved MR angiography), rapid
temporal changes are limited to spatial positions containing
vessels, and temporal changes elsewhere are smooth. This
makes the images sparse after a temporal finite difference or
high pass filter operator is applied. The experimental method
leverages information from several time points, which boosts
the effective signal-to-noise ratio and image quality, even
at high acceleration rates. Regularization of this kind, with
spatial and temporal constraints, is common in image and
video denoising applications not limited to MRI.51–53

The use of sparsity constraints during image reconstruction
often has unwanted side effects. For instance, spatial wavelet
constraints can produce image blurring and loss of fine
details, and temporal finite difference constraints can produce
temporal stair-stepping artifacts. This work builds on prior
work,33 which found that these side effects were mitigated by
using multiple sparsity constraints, rather than relying on just
one.

In a typical clinical protocol, conventional high-resolution
whole-brain 3D T1-weighted static image volumes were
acquired before the GBCA injection and near the end of the
exam, following all GBCA administration. It is worth noting
that the first and last time frames of the experimental high-
resolution whole-brain DCE scan also constitute precontrast-
and postcontrast-enhanced T1-weighted images. This could

Medical Physics, Vol. 43, No. 5, May 2016
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enable the experimental scan to take place of additional static
precontrast- and postcontrast-enhanced image acquisitions,
saving scan resources and time.

There are several factors that preclude an optimal compar-
ison with the conventional protocol. First, both conventional
and experimental scans were performed in the same session
with a relatively short interval. The rationale for this was
practicality. Brain tumor patients were unwilling to come back
on another day for a second MRI scan that was purely for
research purposes. The consequence is that there is significant
residual GBCA on board prior to the second DCE MRI scan,
which could lead to underestimation of K trans values in the
second scan. The order of conventional and experimental
scans was reversed in the last two cases, and the same
K trans underestimation was observed in the second scan,
consistent with residual GBCA (not the imaging technique)
being the cause. Please see Appendix B for details including
an experimental verification. Additionally, due to the short
interval between the two scans, tumors that take up contrast
slowly may show higher conspicuity on the second scan due to
temporal order (e.g., Fig. 2, top row). A limitation of this study
is that only two cases were performed with the experimental-
then-conventional order. In both cases, the experimental (first)
scan was rated as having higher tumor conspicuity than the
conventional (second) scan, but this should be considered
anecdotal because of the small sample size.

Another limiting factor for constrained reconstruction is the
high computational complexity. Using a powerful workstation
and an efficient  implementation, data reconstruction
per dataset required 8 h at the time the studies were performed.
Since then, we have been able to shorten the reconstruction
time to 1.5 h by incorporating coil compression,54 reduced
temporal segmentation, and optimization of the 
implementation. In general, reconstruction time is a limitation
for iterative constrained reconstruction techniques, making
them problematic for real-time imaging or applications that
require immediate availability of image data. Parallelization,
GPU based computation, and efficient -based implementation
are being explored by many groups, and these have provided
reconstruction speedup on the order of 3–200.17,55

This study did not include a quantitative assessment of
spatial and contrast resolution, and this remains an important
next step in the evaluation of constrained reconstruction
techniques in DCE-MRI. Because the experimental method
involves nonlinear reconstruction, the definition of true spatial
and contrast resolution is nontrivial and is an open research
question. Partial solutions such as characterization of local
point spread functions56 and validation with digital or physical
reference objects57 exist but require dedicated investigation
and are highly object-dependent. There are efforts underway
to develop anatomically realistic brain DCE-MRI digital
reference objects,58,59 which will facilitate such work.

Under sampling and constrained reconstruction for MRI
are rapidly developing areas. Several groups, including ours,
are developing constraints and quality evaluation techniques
to maximize the reconstruction quality. The constraints used
in this study have been previously validated in a retrospective
study,33 and the prospective study results shown here further

demonstrate the application and feasibility of constrained
reconstruction for clinical DCE-MRI.

5. CONCLUSION

We conclude that high-resolution whole-brain DCE-MRI
using constrained reconstruction is clinically feasible and pro-
vides superior image quality compared to the current conven-
tional DCE-MRI technique. In our study, the experimental
approach provided superior image and pharmacokinetic map
quality without compromising diagnostic information com-
pared to the current DCE-MRI approach. The experimental
approach also provided complete characterization of all nor-
mal and abnormal tissues, and allowed for arbitrary multiplanar
reformatting of data. This was a significant advantage in two
of the fifteen cases, one with a large glioblastoma multiforme
that exceeded the spatial coverage of the conventional scan and
had a narrow enhancing margin and the other with 14 metastatic
lesions of which only 4 were characterized by the conventional
scan. This study represents, to the best of our knowledge,
the first prospective evaluation of brain DCE-MRI with con-
strained reconstruction. Compared to current best practices,
this new approach has the potential to vastly improve visuali-
zation and characterization of brain lesions with DCE-MRI.
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APPENDIX A: RECONSTRUCTION ALGORITHM

To solve the l1-norm constrained optimization problem
from Eq. (1), we used ADMM, a version of augmented
Lagrangian methods.39 All sparsity transforms can be denoted
by a tall matrix T , that is, T = [V,TV,Ψ]T . Dummy variables u,
v are used to split Eq. (1) to Eq. (A1), where λ is a long vector
that has λ1,λ2, and λ3 in the corresponding transform location,

min
u, v

∥y−Fuu∥2
2+λ∥v∥1 s.t. v =T x,u= Sx. (A1)

Then Lagrangian method is used to convert Eq. (A1) to an
unconstrained problem in the following:

min
u, v,x,e1,e2

∥y−Fuu∥2
2+λ∥v∥1+ ρ1∥T x− v −e1∥2

2

+ρ2∥Sx−u−e2∥2
2, (A2)
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where e1, e2 are Lagrange multiplier terms, and ρ1, ρ2 are
penalties for the axillary dummy variables. With the Lagrange
terms (e1, e2), the penalty parameters (ρ1, ρ2) need not tend
to large values for the equivalence of Eqs. (A2) and (A1) to
hold; the value of these parameters does not affect the final
solution, just the rate of convergence. We empirically chose
them to be 0.05.

Denoting the objective function in Eq. (A2) as L(x, u, v),
the problem can be decoupled to simpler well-defined
subproblems, where every subproblem takes an analytical
form, and can be solved in a single step. The algorithm
relies on iterating between these subproblems until conver-
gence to a guaranteed global minimum. The steps are as
follows.

Initialization :

Select x0, u0= Sx0, v0=T x0, and n = 0

Repeat :

xn+1= argmin
x

L(x, vn,un)

= [ρ2S
′S+ρ1T

′T ]−1(ρ2S
′(un+e2

n)+ρ3T
′(vn+e3

n))
un+1= argmin

u
L(xn+1, vn,u)

= [F′uFu+ρ2S
′S]−1

(
F′uy+ρ2(Sxn+1−e2

n))
vn+1= argmin

v
L(xn+1, v,un+1)= shrink(T xn+1−e1

n;λ/ρ1)

e1
n+1= e1

n+ (vn+1−T xn+1)
e2

n+1= e2
n+ (un+1−Sxn+1)

n = n+1

Until stopping criterion is met

Note that S′S = I because of the properties of the sensitivity
maps, the above steps were simplified into 5 steps compared
to 7 steps in Ref. 39, which accelerated the reconstruction and
simplified the workflow.

APPENDIX B: DOUBLE INJECTION

In this study, a Patlak model was used to estimate PK
parameters for conventional and experimental scans. The
following equation shows the fitting of K trans and vp from

contrast concentration curves of plasma Cp(t) and tissue Ct(t):

∆Ct(t)=K trans
 t

0
Cp(τ)dτ+ vpCp(t), (B1)

Cp(t) is the AIF, where we used a population-based analytic
form,47 and ∆Ct(t) is the GBCA concentration change in
the tissue, which is derived from the signal intensity in the
dynamic images. K trans is the volume transfer constant and vp
is the fractional plasma volume.

The Patlak model is used because it is robust to noise,
in part due to its simplicity and the dependence on linear
(vs nonlinear) estimation.46,60 The model is based on the
assumption that there is no backflux from the interstitium
during a short scan.46 This assumption is not satisfied for the
second injection in which residual GBCA in the interstitium
from the first scan causes backflux that cannot be ignored. Use
of this model causes underestimation of K trans values for the
second scan, as we illustrate below using simulations.

The double-injection experiment is simulated using the
more accurate two-compartment exchange model (2CXM).
Figure 5(a) shows simulated Cp(t) and Ct(t) with 20 min
separation between injections. Figure 5(b) shows the simu-
lated ∆Ct(t) from first and second injections, where the arrows
indicate the altered curve due to residual GBCA. This residual,
indicated with yellow circles in Figure 5(a), is directly related
to the extracellular extravascular volume fraction and the
GBCA concentration in the extracellular extravascular space
prior to the second injection. The end result is 16%–50%
underestimation of K trans for the second scan. This projected
range is based on PK parameter values reported in the literature
for brain tumor.60 Figure 5(c) shows measured ∆Ct(t) curves
from a representative tumor voxel in one case in our study.

To further determine if this underestimation is caused by
injection order, we performed experiments in three brain
tumor patients, where the conventional DCE-MRI scan was
performed twice in a single session. In the three subjects,
tumor K trans was underestimated in the second scan by
15%, 0%, and 24%. We consider these data to be anec-
dotal, but consistent with the simulations and the observed
underestimation in the second scan of the conventional-
then-experimental and experimental-then-conventional pa-
tient scans. Figures 6(a)–6(d) contain zoomed anatomic

F. 5. (a) The 2CXM simulated contrast concentration curves Cp(t) (scaled by 0.2×) and Ct(t) for double injections, separated by 20 min. (b) ∆Ct(t)
calculated from the first and second injections, where ∆Ct(t) from the second injection is lower primarily due to high backflux from the tissue to the plasma.
(c) Actual measured ∆Ct(t) curves in one tumor voxel from a representative patient data, which matched the trend of the simulation.
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F. 6. (a) and (b): Precontrast and postcontrast images of first conventional DCE scan, cropped around an enhancing tumor. (c) and (d): Precontrast and
postcontrast images from the second conventional DCE scan. (e): K trans maps from first DCE scan, (f): K trans maps from second DCE scan. (g): Measured
∆Ct(t) curves in the tumor ROI for the two conventional scans.

images from the 24% case before and after contrast injection
for the two scans, where contrast residue can be seen in
the second scan. Figures 6(e) and 6(f) contain zoomed K trans

maps, where the second scan produced lower estimated K trans

compared to the first scan. In this case, the mean K trans values
in tumor ROI from the second scan were 24% lower than the
first scan. Figure 6(g) shows measured ∆Ct(t) curves in these
two conventional scans, which matches the trend observed
in simulations, conventional-then-experimental scans, and
experimental-then-conventional scans.
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