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Purpose: To evaluate an independent linear model for gradient

acoustic noise on a conventional MRI scanner, and to explore
implications for acoustic noise reduction in routine imaging.

Methods: Acoustic noise generated from each physical gradi-
ent axis was modeled as the prescribed gradient waveform
passed through a linear time-invariant system. Homogeneity

and superposition properties were experimentally determined.
We also developed a new method to correct relative time

shifts between the measured impulse responses for different
physical gradient axes. Model accuracy was determined by
comparing predicted and measured sound using normalized

energy difference. Transfer functions were also measured in
subjects with different body habitus and at multiple micro-
phone locations.

Results: Both superposition and homogeneity held for each
physical gradient axis with errors less than 3%. When all gra-

dients were on simultaneous sound prediction, error was
reduced from 32% to 4% after time-shift correction. Transfer
functions also showed high sensitivity to body habitus and

microphone location.
Conclusion: The independent linear model predicts MRI

acoustic noise with less than 4% error. Acoustic transfer func-
tions are highly sensitive to body habitus and position within
the bore, making it challenging to produce a general approach

to acoustic noise reduction based on avoiding system reso-
nance peaks. Magn Reson Med 71:1613–1620, 2014. VC 2013
Wiley Periodicals, Inc.
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INTRODUCTION

Acoustic noise, caused by fluctuating gradient magnetic
fields, is a significant source of patient discomfort in rou-
tine clinical MRI. This issue is more significant at higher
field strength (1) and can exceed 130 dBA in extreme
cases on commercial 3T scanners by our measurement.

This problem becomes more severe for long scans, and sit-
uations where it is desirable for the subject to sleep with-
out sedation during MRI scanning (2,3).

MRI acoustic noise originates from vibrations of the

three pairs of physical gradient coils. Because these coils

are inside a large static magnetic field (B0), they will ex-

perience Lorentz forces when the currents in these coils

change (slewing). MRI scans require constant switching

of the gradients to generate spatial information. This

leads to constant changes in Lorentz forces, which cause

vibrations of the gradient coils. The noise can be heard

because these vibrations occur at frequencies within au-

dible range (20–20 kHz).
Many attempts have been made to characterize and

reduce MRI acoustic noise (4–15). These include active

noise cancellation during gradient design (4); inserting a

vacuum layer to isolate vibration propagation (5); instal-

ling extra copper shielding to increase shielding efficacy

(6); analyzing the impact of inserting a gradient coil on

vibration with a finite element model (7); and exploring

trade-offs between acoustic noise and field linearity dur-

ing coil design (8,9). An independent linear model was

first proposed by Hedeen and Edelstein (10), in which a

transfer function relates the input gradient waveform

and output acoustic noise on each of the three gradient

axes. Several other studies followed this model (11–18).

The transfer functions were measured and used to design

“soft” gradients (11) and study B0 fluctuation caused by

gradient coil vibrations (12). Smink et al. (13) showed

the ability to reduce sound pressure level (SPL) by

adjusting repetition time (TR) to avoid resonance peaks

of the scanner. Schmitter and Bock (14) modified slice-

select gradient shape to avoid acoustic resonance fre-

quencies (14). Li et al. (15) demonstrated prediction of

the sound of echo planar imaging sequences based on

the transfer functions mainly from one physical axis.

Shaping and timing of the gradient pulses were both

taken into consideration in Ref. (16), but the results were

still limited to one axis only. Measurements from all the

three gradient axes were combined and used to predict

acoustic noise for different sequences in Refs. (17) and

(18), but the results showed substantial difference

between predicted and recorded sound. The differences

were more than 20 dB at some frequencies.
In this work, we experimentally evaluate the independ-

ent linear model for gradient-induced acoustic noise, by
directly testing the superposition and homogeneity prop-
erties. We also introduce a new method to synchronize
the measured impulse responses for all gradient axes and
demonstrate significantly improved sound prediction
when multiple gradients are used simultaneously. Finally,
we examine differences in the measured transfer
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functions with different subjects and different micro-
phone locations within the scanner bore for a single sub-
ject, and discuss implications on the ability to perform
general acoustic noise reduction by avoiding system reso-
nance peaks.

METHODS

Experimental Methods

Experiments were performed on a clinical 3T MR scanner
(EXCITE HDxt, General Electric, Waukesha, WI). Gradient
waveforms were designed in MATLAB (MathWorks Inc.,
Natick, MA), based on a maximum amplitude of 40 mT/
m, maximum slew rate of 150 mT/m/ms, and sampling
period of 4 ms. Gradient waveforms included the follow-
ing: triangles, trapezoids, and low-pass filtered random
noise. Acoustic noise was recorded using an MRI-compat-
ible microphone (Model 4189, Br€uel & Kjær, Nærum, Den-
mark). We used the highest sample rate (48 kHz) available
on the device. SPL was measured using a sound level me-
ter (Model 2250, Br€uel & Kjær).

Single-Axis Linearity Testing and Transfer Functions

Previous studies (10–18) have assumed that, for each
pair of gradient coils, there is a linear system relation-
ship between the gradient waveforms and the acoustic
noise they produced. To our knowledge, this linear rela-
tionship has not yet been verified by direct experiment
based on the definition of linearity. We begin by directly
testing the homogeneity and superposition properties of
each axis.

Let Tf�g be the system function where the input giðtÞ
(i 5 x, y, z) is the gradient waveform and output yiðtÞ
(i 5 x, y, z) is the recorded sound. Because Fourier trans-
form (FT) is a linear operator, homogeneity and superpo-
sition properties for each axis can be expressed as:

FTfTfagiðtÞgg ¼ FTfayiðtÞg ¼ aYiðf Þ [1]

FTfTfgi;1ðtÞ þ gi;2ðtÞgg ¼ FTfyi;1ðtÞ þ yi;2ðtÞg
¼ Yi;1ðf Þ þ Yi;2ðf Þ [2]

where Yiðf Þ is the sound spectrum of yiðtÞ after FT.
We used triangle, trapezoidal, and 10 different filtered
random noise waveforms as inputs to test system linearity

on each gradient axis, as shown in Figure 1. All random
noise gradient waveforms were low-pass filtered to 4 kHz
due to the slew rate limit of the scanner. Homogeneity
errors eh and superposition errors es were calculated by
comparing the magnitude of the right and left side of Eqs.
[1] and [2], respectively: eh ¼ jFTfTfagigg � aYij=jaYij;
es ¼ jFTfTfgi;1 þ gi;2gg � ðYi;1 þ Yi;2Þj=jYi;1 þ Yi;2j.

If the linearity property holds, we can determine the
system transfer functions. We define Hiðf Þ ¼ FTfyiðtÞg=
FTfgiðtÞg ¼ Yiðf Þ=Giðf Þ (i 5 x, y, z) as the transfer func-
tions, where f is the temporal frequency variable. We
again used the gradients shown in Figure 1 as inputs to
calculate Hiðf Þ for each axis, respectively.

Acoustic Noise Prediction

The measured transfer functions can then be combined
to predict acoustic noise Ŷ ðf Þ of arbitrary gradient
sequence:

Ŷ ðf Þ ¼ Gxðf ÞHxðf Þ þ Gyðf ÞHyðf Þ þ Gzðf ÞHzðf Þ [3]

where Giðf Þ are the frequency spectra of input gradient
waveforms.

One problem with the prediction arises from errors in
the calculation of Hiðf Þ. It is very difficult to accurately
identify the exact beginning of yiðtÞ that corresponds to a
particular giðtÞ due to background noise. Because each
Hiðf Þ is calculated individually, the relative time delays
between the beginning of input giðtÞ and output yiðtÞ for
each axis are different. This leads to different time shifts
of the impulse responses for different axes, which is
equivalent to applying different linear phases to different
Hiðf Þ. These different time shifts, if not corrected, will
cause substantial complex sum errors when using Eq.
[3]. We propose the following method to resolve this
issue.

The beginning of the recorded sound waveform for
each axis yið0Þ is first selected by visual inspection or
simple amplitude thresholding. Assume the difference
between yið0Þ and the actual time the first sound wave-
front caused by gradients arriving the microphone is Dtx ,
Dty , and Dtz, respectively, for all three axes, Eq. [3]
becomes:

FIG. 1. Representative gradient waveforms used for linearity test and transfer function measurement. (a)–(c) are triangle and trapezoids;
(d) shows one realization of random noise gradient after low-pass filtering (fc ¼ 4 kHz) and 10 different realizations are used. For super-

position test, any two of the waveforms are first scaled by 1/2 and then summed to make sure maximum slew rate is not exceeded.
The units for these waveforms are all mT/m. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Ŷ ðf Þ ¼ Gxðf ÞHxðf Þe�j2pf Dtx þ Gyðf ÞHyðf Þe�j2pf Dty

þGzðf ÞHzðf Þe�j2pf Dtz ¼ e�j2pf Dtx ½Gxðf ÞHxðf Þ

þGyðf ÞHyðf Þe�j2pf ðDty�DtxÞ þ Gzðf ÞHzðf Þe�j2pf ðDtz�DtxÞ�
[4]

The exact values of Dtx , Dty , and Dtz are difficult to
determine, but if all yiðtÞ used to calculate Hiðf Þ are
aligned so that Dtx ¼ Dty ¼ Dtz, Eq. [4] is reduced to:

Ŷ ðf Þ ¼ e�j2pf Dtx ½Gxðf ÞHxðf Þ þ Gyðf ÞHyðf Þ þ Gzðf ÞHzðf Þ�
[5]

The linear phase term at the beginning of the right
hand side of Eq. [5] would have no effect on the magni-
tude spectrum of Ŷ ðf Þ and would only cause a time shift
of its corresponding time domain signal ŷ ðtÞ. We use the
following method to align Dtx , Dty , and Dtz, as described
in Figure 2 as well. Arbitrary gradient inputs are played
simultaneously on both x- and y-axes. An extra term
exp ð�j2pDtÞ is applied to Hyðf Þ to compensate for the
difference between Dtx and Dty . The goal is to find out
Dt. Input spectra Gxðf Þ and Gyðf Þ are multiplied by corre-
sponding transfer functions and summed to produce pre-
dicted sound Ŷ ðf ;DtÞ. This is then compared with the
recorded sound spectrum Yðf Þ using Itakura-Saito Dis-
tance: DISðŶ ;YÞ ¼ jjY=Ŷ � log ðY=Ŷ Þ � 1jj1 (19). The
smaller the distance of the two spectra, the more similar
they are. If Eq. [5] holds, there should be one single min-
imum of DIS among different Dt. Thus, the Dt corre-
sponding to the minimum of Itakura-Saito Distance
should be the difference between Dtx and Dty . The same
procedure is used to align Dtx and Dtz. After the different
time shifts of transfer functions are aligned, we then use
Eq. [5] to predict the sound.

We did experiments in two situations: (1) only one of
the three gradient axes was on and (2) all the three gra-
dients were on. The predictions were then compared with

the measured acoustic noise. For comparison, we also cal-
culated the predicted spectra with no time-shift correction
being applied. All experiments above were conducted at a
fixed location near isocenter when the scanner was empty.

Dependence on Body Habitus and Microphone Location

We also investigated the impact of body habitus and
microphone location on the transfer functions, as this
would be critical for implementing a general method of
reducing acoustic noise, e.g., one that is based on avoid-
ing resonance peaks of the system (13,14). We measured
the transfer functions when two different subjects were
inside the scanner. The microphone was placed at the
same location, close to the subject’s left ear. Then, we
moved the microphone along the axis of the bore (z-axis)
with a distance increment of 5 cm and measured transfer
functions for each gradient axis.

RESULTS

Single-Axis Linearity Tests and Transfer Functions

Figure 3 shows a representative example of the system
homogeneity and superposition test, in which two differ-
ent random noise gradients were used as inputs on the
x-axis. The sound pressure waveforms were measured in
Pascal. After applying FTs, which are integrals over
time, the units become Pascal seconds. Table 1 summa-
rizes the results for all the three axes. Homogeneity and
superposition errors were within 3% for all axes,
although errors for the z-axis were slightly higher.

Different input gradients shown in Figure 1 were used
to generate transfer functions. Figure 4a–c shows calcu-
lated transfer functions for each axis, respectively. Note
that the measured transfer functions did not vary with
the choice of input gradient. We show the results up to
2200 Hz for the trapezoid inputs because the trapezoids
we used have a full-width half-maximum of 0.4 ms,

FIG. 2. Correction of time shifts

for x- and y-axis impulse
responses. An extra term exp
(-j2pDt) is applied to HyðfÞ to

compensate for Dtx – Dty. Input
spectra GxðfÞ and GyðfÞ are then

multiplied with corresponding
transfer functions and summed to
produce predicted sound Ŷ ðf;DtÞ.
Ŷ ðf ;DtÞ is compared with the
recorded sound spectrum YðfÞ
using Itakura-Saito distance while

varyingDt. Dt corresponding to
the minimum Itakura-Saito dis-

tance is chosen as the estimate
of Dtx – Dty and applied to future
sound predictions. [Color figure

can be viewed in the online issue,
which is available at

wileyonlinelibrary.com.]
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which corresponds to their first zero crossing at 2500
Hz in frequency domain. Since Hiðf Þ ¼ Yiðf Þ=Giðf Þ, for
any frequencies close to the zero crossings of Giðf Þ,
the value of Hiðf Þ would not be accurate. For the
same reason, we show the spectra up to 4000 Hz for
the triangle input, which has its first zero crossing at
5000 Hz.

Acoustic Noise Prediction

Table 2 summarizes our acoustic noise prediction results
for each of the single axis as well as the situation where
gradients were played simultaneously on all axes. Fif-
teen different inputs were used for each case. The pre-
dicted spectra were compared with the actual recorded
sound and prediction error was calculated using power
spectrum difference: (jŶ j2-jYj2)/jYj2�100%. Two exam-
ples of prediction results are plotted in Figure 5. Figure
5a shows the case when a random noise waveform was
played on y-axis only. Figure 5b compares the recorded
and predicted sound spectra when different random
noise gradients were played on all the three axes. All
random noise waveforms lasted 50 ms and TR was set to
100 ms. All results were averaged over 10 TRs.

Dependence on Body Habitus and Microphone Location

The transfer functions were also measured at a fixed
location close to isocenter when two different subjects
were present inside the scanner, as plotted in Figure 6.
Transfer functions for four different locations next to the
same subject’s left ear were shown in Figure 7. The var-
iations show random patterns that are difficult to model.
To quantitatively see the impact, transfer functions
measured for subject 1 were used to simulate acoustic
noise when subject 2 was present; transfer function
measured at one location was used to simulate sound at

another location 5 cm away. The results are summarized
in Table 2.

DISCUSSION

We have tested the independent linear model for acous-
tic noise on a conventional MRI scanner, based on the
definition of homogeneity and superposition. Our results
show that this is a reasonable assumption (error < 3%),
especially for gx and gy, where the errors are less than
1%. This is in accordance with our single axis sound
prediction results. As can be seen in Table 2, the power
spectrum error for the gz-only case is slightly larger than
for the other two axes. This may be related to the geo-
metric assembly of the gradient coils within the scanner,
which is beyond the scope of this work. But even so, the
linear model is still reliable in general for each gradient
axis. From Figure 4, it can be seen that for each axis, the
transfer functions were input independent, which again
supports the linearity of the system.

Equation 3 considers the acoustic noise produced by each
pair of gradient coils to be independent. In other words, it

FIG. 3. One example of system

homogeneity and superposition
property test.(a) shows the actual
random noise input gradient

waveforms played after low-pass
filtering. Yx,1(f) and Yx,2(f) are the
recorded sound spectra for inputs

gx,1(t) and gx,2(t), respectively.(b)
shows homogeneity property test

result based on Eq. [1] (a ¼ 1/2).
(c) shows superposition property
test result based on Eq. [2]. The

units for recorded sound pressure
waveforms are Pascals (Pa), and

the units for their spectra, as
shown, are Pa seconds. [Color
figure can be viewed in the online

issue, which is available at
wileyonlinelibrary.com.]

Table 1

Homogeneity and Superposition Property Test for Each Physical
Gradient Axis

Homogeneity
error, eh (%)

Superposition
error, es (%)

gx 0.52 6 0.13 0.62 6 0.16
gy 0.48 6 0.11 0.64 6 0.15

gz 0.77 6 0.25 2.77 6 0.55

eh ¼ jFTfTfagigg � aYij=jaYij;
es ¼ jFTfTfgi;1 þ gi;2gg � ðYi;1 þ Yi;2Þj=jYi;1 þ Yi;2j:

The input gradient waveforms used are shown in Figure 1. a was

arbitrarily chosen as long as within system slew rate limit.
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assumes that there is no mechanical coupling between the
coils. The accuracy of this linear model depends on how the
scanner is manufactured and the impact of mechanical cou-
pling could vary among different scanner models.

Previous works (11,17,18) reported poor accuracy of
the prediction methods when sound from all the three
gradient axes is combined. We suspect that this is in
large part due to the different time shifts of the transfer

FIG. 4. Transfer functions of all the
three axes. (a–c) shows transfer
functions for x-, y-, and z-axis,

respectively, using different gradient
inputs. The colors correspond to

input gradients in Figure 1. Transfer
functions generated by random
noise inputs were averaged over 10

different realizations. The magnitudes
were referred to 0.1 Pa/(mT m–1) as

0 dB. Note that transfer functions
generated by two trapezoids were
shown up to 2200 Hz due to their

full-width half-maximum limits.

FIG. 5. Examples of predicted acoustic noise spectrum compared with recorded sound spectrum. In (a), a low-pass-filtered random

noise (fc ¼ 4 kHz) was played on y-axis only. In (b), different random noise gradients were played on all the three axes. All random
noises waveform lasted 50 ms and TR was set to 100 ms. All results were averaged for 10 TRs. Spectrum 0 dB reference was set to 1

Pa s. The arrow points at the high-energy frequency range where the prediction without phase correction has substantial error.
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functions. We thus proposed a new method to align
these time shifts, as mentioned in the Methods section.
The prediction accuracy is substantially improved to bet-
ter than 96% (Table 2). This also suggests that the
impact of mechanical coupling of all gradient coils is
minimal in our case and the sound generated from each
gradient axis can be simply added without considering
the interference between its sources.

One could argue that if a triggering device is used, the
gradient pulses and sound recording can be started
simultaneously. We found that the final prediction is
extremely sensitive to even the smallest timing error. If
any of the yiðtÞ used to generate transfer functions was
mismatched by even two audio samples (0.04 ms), the
final prediction error increased from <3% to >10%. The
triggering input on our research-grade sound level meter

had timing accuracy of 500 ms. A triggering device
would only work if its accuracy could achieve the level
of 0.01 ms or less.

It is worth noting that in Figure 5, after time shift cor-
rection, there are more errors in the lower (<300 Hz) and
higher frequencies (>2800 Hz) than the frequency range
between them. The lower frequency range corresponds
to the wavelengths longer than 1 m, which is roughly
the length of the bore. So the errors may be due to the
nonlinear interference such as diffraction. Errors in
higher frequency range may be due to increased sensitiv-
ity to phase. Most of the acoustic noise energy lies
between 500 and 3000 Hz, which is the frequency range
where the model predictions are very accurate.

Another interesting finding is that the prediction error
is higher (�7%), when maximum slew rate was used on

Table 2
Acoustic Noise Prediction Using the Independent Linear Model

Prediction error (%)

Prediction error (%)

(subject mismatch)

Prediction error (%)

(location mismatch)

gx 0.41 6 0.14 14.97 6 5.95 45.22 6 15.32

gy 0.61 6 0.22 15.23 6 4.68 35.25 6 18.38
gz 2.76 6 1.37 29.36 6 8.63 32.72 6 8.32
gx þ gy þ gz 31.90 6 6.15 34.52 6 10.73 48.36 6 19.57

gx þ gy þ gz

(with time shift correction)
3.86 6 2.49 30.11 6 9.29 45.36 6 13.77

Prediction error was calculated using power spectrum difference: (jŶ j2-jYj2)/jYj2�100%.
Subject mismatch prediction: transfer functions measured when subject 2 was present was used for subject 1.
Location mismatch prediction: transfer functions measured at one location was used to predict sound at a different location 5 cm away

along z-axis.

FIG. 6. Transfer functions for an
empty bore and two different
subjects. The microphone was

placed at a fixed location close to
scanner isocenter for all the three

cases. 0 dB ¼ 0.1 Pa/(mT m–1).
[Color figure can be viewed in the
online issue, which is available at

wileyonlinelibrary.com.]
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all the three axes simultaneously. If maximum slewing
does not occur at the same time or is not used, the error
is roughly 3%.

With the knowledge of the transfer functions, a natural
extension would be to optimize the sequence gradients
to avoid the system resonance peaks so that the acoustic
noise can be reduced. However, this may be difficult to
implement. As we can see from Figures 6 and 7, the
transfer functions vary greatly among different subjects
and microphone locations, especially for frequencies
higher than 1000 Hz. Table 2 also shows substantial pre-
diction errors if the exact transfer functions are not used.
Due to the nature of sound wave propagation and the
irregular shape of scanners, the variation is difficult to
model. Even if the acoustic noise at a particular location
can be reduced, unless both the table and the subject are
still throughout the examination, or the gradient
sequence is designed such that most of the energy is
located at frequencies below 1 kHz, it would be difficult
for the subject to benefit.

CONCLUSIONS

We have evaluated an independent linear model for gra-
dient-induced MRI acoustic noise on a commercial 3T
scanner by experimentally testing the superposition and
homogeneity properties. The results show that the errors
are less than 3% for all physical gradient axes, and less
than 4% when all physical gradient axes are on simulta-
neously. We introduced a new method to synchronize
measured acoustic impulse response for the three axes
that improved prediction error from 32% to 4% when all

gradients are on simultaneously. Finally, we demon-
strated that the gradient-sound transfer functions are
highly dependent on body habitus and microphone loca-
tion within the scanner bore, suggesting that any general
approaches for acoustic noise reduction based on avoid-
ing system resonance peaks will likely require subject-
specific and location-specific calibration scans.
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