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Purpose: Dynamic contrast-enhanced imaging provides
unique physiological information, notably the endothelial per-

meability (Ktrans), and may improve the diagnosis and manage-
ment of multiple pathologies. Current acquisition methods
provide limited spatial-temporal resolution and field-of-view,

often preventing characterization of the entire pathology and
precluding measurement of the arterial input function. We

present a method for highly accelerated dynamic imaging
and demonstrate its utility for dynamic contrast-enhanced
modeling.

Methods: We propose a novel Poisson ellipsoid sampling
scheme and enforce multiple spatial and temporal l1-norm

constraints during image reconstruction. Retrospective and
prospective analyses were performed to validate the
approach.

Results: Retrospectively, no mean bias or diverging trend was
observed as the acceleration rate was increased from 3� to

18�; less than 10% error was measured in Ktrans at any indi-
vidual rates in this range. Prospectively accelerated images at
a rate of 36� enabled full brain coverage with 0.94 � 0.94 �
1.9 mm3 spatial and 4.1 s temporal resolutions. Images
showed no visible degradation and provided accurate Ktrans

values when compared to a clinical population.

Conclusion: Highly accelerated dynamic MRI using com-
pressed sensing and parallel imaging provides accurate per-

meability modeling and enables full brain, high resolution
acquisitions. Magn Reson Med 71:635–644, 2014. VC 2013
Wiley Periodicals, Inc.
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Dynamic contrast-enhanced (DCE) MRI employs serial
T1-w imaging, typically with a three-dimensional (3D)
spoiled gradient echo sequence, during a bolus injection
of a Gadolinium-based contrast agent. Changes in signal
intensity are mapped to changes in contrast agent
concentration then regressed to quantify physiological
parameters related to vascular permeability (Ktrans, Kep)
and cellular compartmentalization volumes, including
the fractional plasma volume (vp) and the extravascular-
extracellular volume fraction (ve) (1,2).

DCE is a promising tool for tumor assessment as it ena-
bles quantification of vascular and cellular irregularities.

Histologically, abnormal blood–brain barrier permeability

is associated with tumor progression; this is observed
with DCE imaging, where Ktrans correlates with tumor

grade (3). It has been used for monitoring therapy

response (4) and holds vast potential for drug trials (5).
Despite unequivocal benefits, clinical and research adop-

tion has been limited. This is due, in part, to suboptimal

image acquisition.
Acquisition of imaging data for DCE is challenging

since a new image volume must be obtained every

1–30 s to detect signal intensity changes resulting from

diffusion of the agent from the intravascular space to the

extravascular-extracellular space (6–8). As a result, spa-

tial resolution and volume coverage are severely re-

stricted. A typical protocol is limited to �2000 repetition

periods, with data distributed across the phase- and

slice-encodes. In-plane resolution typically exceeds

1 mm2 and slices are often at least 5 mm thick. Despite

thick slices, volume coverage is frequently inadequate to

cover the known pathology; previously unknown pathol-

ogies are likely missed. Additionally, limited volume

coverage and spatial-temporal resolution precludes con-

sistent, patient-specific, extraction of the arterial input

function (AIF), which is important for accurate pharma-

cokinetic modeling (9). Methods to reconstruct images

from vastly undersampled data are predicted to improve

DCE imaging (10).
Parallel imaging (PI) enables slightly accelerated image

acquisition. Modest acceleration rates can often be

achieved with tolerable noise amplification and residual

aliasing artifacts. Unfortunately, limited slice coverage

precludes substantial acceleration in the slice-encode

direction. Traditional data sharing methods, such as

TRICKS (11) or TWIST (12), sample the center of k-space

more frequently than the periphery and allow acceler-

ated acquisitions at the expense of spatial-frequency

dependent temporal blurring. PI and conventional data

sharing has become standard in many DCE protocols, but

full volume coverage with high spatial-temporal resolu-

tion remains elusive.
Recently, compressed sensing (CS) has been shown to

relax the MRI sampling requirements (13), enabling

accelerated acquisitions. This approach applies recon-

struction constraints to undersampled data to synthesize

an image. It iteratively minimizes coefficients in a sparse

representation to suppress unwanted features while

maintaining those consistent with the acquired data. Effi-

cacy hinges on the sparsity transform(s): representations

requiring few non-zero coefficients can be highly acceler-

ated. In general, sparsity is enhanced with the dimen-

sionality of the application, making 4D dynamic

acquisitions amenable to acceleration via CS.
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To date, several works have employed CS (or similar
approaches) for DCE imaging. Notably, Adluru et al.
(14) employed a nonlocal means constraint to recon-
struct 5� retrospectively undersampled DCE data.
Chen et al. (15) proposed a temporally constrained
reconstruction and demonstrated accurate pharmacoki-
netic modeling at a retrospective acceleration rate of
6�. Smith et al. (16,17) demonstrated retrospective
acceleration between 2� and 4� and reported gener-
ally accurate Ktrans values but some inconsistency was
observed between human and animal studies. Han
et al. (18) implemented an 8� prospectively acceler-
ated 2D method with spatial and temporal constraints
and demonstrated a correlation between accelerated
and fully sampled data. To the best of our knowledge,
no one has effectively combined PI and CS for prospec-
tively accelerated DCE imaging nor fully characterized
the resulting errors in the pharmacokinetic modeling
endpoints.

In this work, we describe a novel data sampling strat-
egy and reconstruction constraints to leverage both PI
and CS to enable highly accelerated dynamic acquisi-
tions and accurate DCE imaging. We validate the accu-
racy of this method with a retrospective analysis of fully
sampled image sets and demonstrate its utility for pro-
spectively accelerated high resolution, full brain DCE
MRI. The proposed accelerated protocol provides full
brain coverage with 0.94 � 0.94 � 1.9 mm3 spatial- and
4.1 s temporal-resolution.

METHODS

Variable Density Poisson Ellipsoid Sampling

Poisson disc sampling balances uniform and random
sample spacing and is suitable for combined PI and CS
(19). This approach defines a set of phase- and slice-

encodes, chosen stochastically from Cartesian ky–kz

space (the readout, kx, is fully sampled) with the con-
straint that samples not coexist within discs surrounding
each sample. Here, we modify this approach to enable
variable density sampling, and extend it for dynamic
imaging with 3D volumes, Figure 1.

Variable density (Fig. 1a) is achieved by subdividing
ky–kz space into a series of i annuli with interior radii ri.
Each annulus is assigned a uniform sampling density qi

that decreases exponentially from the center of k-space
with a decay constant s,

ri ¼ r0e�ri=t: [1]

The scaling factor q0 is chosen to ensure that the total
number of sampled points (based on the matrix size and
acceleration rate), nt, are acquired. With this scaling, the
number of desired samples per annulus, ni, is given by

ni ¼ nt
Nie

�ri=t

X
i
Nie�ri=t

: [2]

where Ni is the number of possible sampling locations
within an annulus (readily computed numerically). In
this work, we employed a decay constant of 3 cm�1, cho-
sen empirically for relatively high sampling density in
the center and non-zero density at the periphery of
k-space. We enforce a fully sampled central region con-
taining 10% of the total samples—these samples are not
subject to the minimum spacing requirements of Poisson
disc sampling.

Dynamic sampling was achieved by extending the con-
ceptual ky–kz discs surrounding each sample into ky–kz–t
ellipsoids, Figure 1c,d. These ellipsoids define the mini-
mum distance between samples and determine the
amount of uniformity and randomness in the sampling

FIG. 1. Variable density Poisson ellipsoid sampling scheme for dynamic 3D acquisitions. a: Variable sampling density in ky–kz space is

achieved by dividing k-space into annuli with radially decreasing sampling densities. During computation, subsequent samples are
placed in the annuli furthest from its target density. b: The resulting sampling pattern (white locations are acquired locations; black are

omitted) has a fully sampled center with a higher sampling density near the center of k-space than at the periphery. c: Dynamic sam-
pling tables are obtained by defining hypothetical ellipsoids in k–t space [shown in (d)], which define volumes that exclude subsequent
sampling. Sample locations are chosen pseudo-randomly, constrained to avoid proximity to other samples and to fulfill the annular sam-

pling density. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]
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pattern. Ellipsoid radii (independent of radii used for
variable sampling density) in the ky and kz directions
were chosen based on the PI capabilities of the receiver
array. All data were acquired with an eight-channel head
coil—suitable for PI in the anterior/posterior and left/right
directions. Retrospective images were acquired in the
axial plane and the ky and kz radii were nominally set to
3.0 and 0.75 samples respectively while the temporal ra-
dius was set at three time frames. The ky radius was
reduced to two points at 9�, 12�, and 15� and to one
point at 3� and 6� to accommodate the required sam-
pling density. Prospectively undersampled images were
acquired coronally, enabling 2D PI. In this case, radii of
two points, two points, and two frames were employed in
the ky, kz, and time dimensions respectively.

Sampling tables were computed with a dart-throwing
algorithm, governed by the following pseudo-code:

Define s, ri’s, and Poisson ellipsoid radii
Compute nt, qo, qi, Ni’s, ni’s

Initialize empty list of defined sample locations
WHILE (length of defined sample locations<nt)

Determine time frame for a candidate sample location
(from frames with the fewest samples)

Determine radial bounds for a candidate sample loca-
tion (annulus furthest from its target density)

Randomly determine candidate ky-kz-t location within
radial and temporal bounds

IF (candidate location is not within the Poisson ellip-
soid of any defined sample location)

Concatenate candidate location to defined sample
locations

ENDIF

ENDWHILE
Append fully sampled central locations to defined

sample locations

Constrained Reconstruction

Images were reconstructed using a sparse SENSE signal
model (20,21) with multiple spatial and temporal con-
straints, applied as l1-norm penalties, to reconstruct the
4D data sets. Multiple penalties were employed to lessen
the burden on individual constraints, minimizing com-
pression artifacts characteristic of each transform. The
image, m (in vector form), was obtained by minimizing

f ðmÞ ¼ ||FuSm� y||2
2 þ l1||Vm||1 þ l2||cm||1

þ l3||Tvm||1 [3]

where Fu is the undersampled Fourier operator, S is the
sensitivity operator, y is the acquired k-space data, V is a
temporal high-pass filter, W is a 4D wavelet transform,
and Tv is total variation in the spatial domain. These
constraints are described in more detail in the following
section. An initial estimate of m was obtained via tempo-
rally averaged data. The initial image estimate was
scaled to a maximum value of 1; this scale factor was
also applied to y. Selection of regularization factors,
k1,2,3, is described below. Sensitivity maps were com-
puted using the eigenvector decomposition method

proposed by Lai et al. (22); the temporally averaged, fully
sampled center of k-space (averaged temporally) was
used for coil calibration. Equation [3] was minimized
with a nonlinear conjugate gradient method where the
gradient was computed according to (13).

Images were reconstructed in MATLAB on a 12-core
Linux workstation with 48 Gb of RAM. Retrospective
images were reconstructed as a single 4D problem; pro-
spective images were inverse Fourier transformed in the
readout dimension then segmented into blocks of 64
readout points to reduce the memory usage. Reconstruc-
tion time was under 30 min for each retrospective image
set and approximately 8 h for each prospective set.

Reconstruction Constraints

Equation [3] imposes three l1-norm constraints on the
data consistency term to suppress incoherent aliasing
and synthesize missing data. A 4D decomposition with a
Daubechies two wavelet was employed in the spatial
and temporal domains. The decomposition level was tai-
lored to the array size to fully compress each dimension
of the asymmetric 4D image. A total variation constraint
was applied in the spatial domain to attenuate noise and
reduce artifacts from the other constraints.

A high-pass filter was applied along the temporal do-
main to promote a smoothly varying time course. We
employed a symmetric window given by [0.06, 0.44, �1,
0.44, 0.06]. This filter was computed by removing the
central element from a Gaussian window (FWHM of two
points) to remove the weight placed on the current time
frame (the data consistency term in Eq. [3] performs this
task), normalizing, then subtracting the original signal.
This design approach is a variant of the difference of
Gaussians method. This filter produces significant coeffi-
cients during periods of rapid signal change, which are
expected to occur in relatively few voxels, with the larg-
est variation occurring during arrival of the contrast
bolus.

The regularization factors k1, k2, and k3 were selected
to emphasize wavelet sparsity followed by the temporal
filter, then total variation. Regularization factors were
selected such that the resulting l1-norms (scaled by their
regularization term) were within a factor of 4 of each
other when tested on a subset of the data. This ensured
all constraints contributed to the image reconstruction.
In the retrospective analysis, the regularization factors
were set to k1¼ 1.0 � 10�4, k2¼ 3.0 � 10�5, and k3¼ 1.5
� 10�3; in the prospective study, to k1¼ 1.5 � 10�3,
k2¼ 3.5 � 10�4, and k3¼1.5 � 10�2.

Retrospective Study

Eight fully sampled DCE data sets were acquired from
brain tumor patients. Two sets were discarded due to
subject motion; this motion did not compromise the
constrained reconstruction, but cases were discarded to
ensure that pharmacokinetic modeling parameters repre-
sent true signal variations rather than erroneous changes
due to misregistration. One case was discarded due to
absence of an enhancing lesion. The remaining five sets
were retrospectively undersampled then reconstructed to
validate the proposed method. Each data set was
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processed twice, with different sampling patterns, effec-
tively doubling the sample size. 3D spoiled gradient
echo images were collected on a 3T GE HDxt scanner
using an eight-channel head coil with a matrix size of
256 � 186 � 10 and 35 time frames. Spatial resolution
was 0.93 � 1.3 � 6.0 mm3; temporal resolution was 10 s.

T1-weighting was achieved with a flip angle of 15
�

and a
repetition time of 5.5 ms. Raw data was resampled with
variable density Poisson ellipsoid tables at six accelera-
tion factors between 3� and 18�. A unique sampling ta-
ble was generated for each reconstruction. In all
retrospectively undersampled data, the first time frame

FIG. 2. Representative image quality of retrospectively undersampled data in a patient with a meningioma. A single slice is shown at

two adjacent time frames, immediately before (top row) and after (middle row) bolus arrival. The fully sampled case (1�) and five accel-
eration factors (6�–18�) are presented. High image fidelity is observed at all acceleration rates although increased noise is observed at
higher rates, particularly in the enhancing region where substantial signal change occurs between time frames. Difference images (bot-

tom row, intensity scaled by 4�) between accelerated and the fully sampled data are shown for images in the middle row. Small vascu-
lar regions show the greatest error.

FIG. 3. (left) Typical vascular time–intensity curves for retrospectively undersampled DCE data. A single voxel ROI was selected from a
small arteriole near a high contrast boundary. Time-–intensity curves from a fully sampled case (open circles) and from six accelerated
cases (solid lines) are shown; the region surrounding the bolus arrival is enlarged. High fidelity is maintained, even at 18�, although con-

trast during bolus arrival decreases monotonically with acceleration rate. (right) Fully sampled and accelerated time–intensity curves
from multivoxel tumor ROIs in four subjects. Large ROIs and slow signal variation enable near-perfect reconstruction of the contrast dy-

namics at all acceleration rates. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]
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was fully sampled to provide a stable baseline prior to
contrast arrival. All subsequent frames were under-
sampled by the stated rate. Images were reconstructed
from Eq. [3].

Typical images are presented for visual assessment
and representative time–intensity curves of vascular
regions at different acceleration rates are shown. Pharma-
cokinetic modeling was performed in ImageJ with TOPP-
CAT (23) to obtain the volume transfer constant between
plasma and the extravascular-extracellular space (Ktrans,
units of min�1) and the fractional plasma volume (vp,
unitless) maps. The AIF was selected from a small arte-
rial region-of-interest (ROI; between 1 and 4 voxels). The
same ROI was used at all acceleration rates but the
plasma concentration was measured from the corre-
spondingly sampled image, and so varied with accelera-
tion rate. The baseline longitudinal relaxation time was
assumed to be 1.0 s for all pharmacokinetic modeling.
This isolates errors related to acceleration and con-
strained reconstruction—the objective of this work—at
the expense of absolute quantitation.

Prospective Study

Ten prospectively undersampled data sets were acquired
from multiple sclerosis patients and from brain tumor
patients. Two data sets were discarded due to subject
motion that hindered pharmacokinetic modeling; under-
sampled reconstruction was not substantially compro-
mised due to this motion. Coronal 3D spoiled gradient
echo images were acquired with a flip angle of 15

�
and a

repetition time of 4.5 ms. The acquisition matrix was 256
� 256 � 128 with 82 time frames, corresponding to a spa-
tial resolution of 0.94 � 0.94 � 1.9 mm3 and a temporal re-
solution of 4.1 s. The net acceleration factor was 36�. The
same variable density Poisson ellipsoid sampling table was
used for all subjects. The contrast injection occurred 45 s
into the scan to provide stable baseline images; the first
five image volumes (�20 s) were discarded.

Images were evaluated qualitatively for aliasing arti-
facts and spatial-temporal blurring. Time–intensity

FIG. 4. Ktrans (left) and vp (right) maps of a brain tumor patient
obtained with fully sampled (1�) and retrospectively under-
sampled (3�–18�) images. Parameter values in the tumors remain

accurate at all acceleration rates although noise increases with
acceleration. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com]

FIG. 5. Bland–Altman plots showing differences between fully sampled and accelerated parameters versus their average. Average differ-
ences are indicated with dashed lines; 61.96 standard deviations with dotted lines. Mean differences are all near zero but the width of

the standard deviation bars increases with acceleration. Also visible is a trend toward overestimation of accelerated Ktrans with increas-
ing permeability—this is attributed to contrast attenuation of the AIF at high acceleration rates, similar to Figure 3 (left). Acceleration

rates of 6� and 12� have been omitted for clarity; they demonstrate the same trend observed in the rates shown.
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curves from vascular ROIs (between 1–5 voxels) were an-
alyzed and compared to fully sampled data sets from
subjects included in the retrospective study.

Pharmacokinetic modeling was performed with
TOPPCAT (23) to obtain Ktrans and vp. Like in the retro-
spective study, a small arterial ROI was used to mea-
sure the AIF. The baseline longitudinal relaxation time
was again assumed to be 1.0 s. This was done for two
reasons: first, we are only concerned with acceleration-
induced variations. Second, acquiring accurate T1 maps
becomes challenging with this high resolution DCE
scan: T1 mapping can take longer than the dynamic
scan and optimization of this process is beyond the
scope of this work. Lack of baseline T1 values pre-
cludes truly quantitative modeling; implications are
discussed below.

The nasal turbinate mucosa served as a reference
tissue to validate the accuracy of the prospectively
accelerated DCE protocol. Average permeability and
plasma volume fractions were obtained from ROIs in
the eight prospectively accelerated scans (number of
voxels per ROI: average, 312; range, 94–653) and from a
cohort of eight fully sampled scans (number of voxels
per ROI: average, 420; range, 169–924), drawn from a
clinical database based on appropriate slice coverage. A
two-tailed paired t-test was employed to probe for dif-
ferences between accelerated and fully sampled
parameters.

RESULTS

Retrospective Study

Figure 2 contains a single slice at two adjacent time
points from a meningioma patient reconstructed from
the same source data but retrospectively undersampled
to simulate different acceleration rates (as labeled). No
residual aliasing artifacts are seen but increased noise is
observed as the acceleration factor is increased from 1�
(fully sampled) to 18�. Loss of spatial resolution is visi-
ble with increasing acceleration factor, as evidenced by
blurring of small vascular features. Difference images
between the fully sampled and accelerated images dur-
ing maximal vascular enhancement report negligible
temporal blurring of the contrast dynamics in the large
tumor region. Small vascular regions are the most promi-
nent features in these difference images, suggesting some
signal attenuation as the contrast bolus arrives.

Representative time–intensity curves from an arterial
ROI at various acceleration factors are shown in Figure
3a. A single voxel ROI in a small artery near high con-
trast boundaries was selected since similar regions were
identified on subtraction images, as noted above. Multi-
voxel ROIs and larger vascular structures frequently pro-
vide improved fidelity (not shown). Accelerated curves
show no premature contrast arrival or delayed washout;
however, a monotonic decrease in signal intensity with
increasing acceleration rate is observed at maximum
enhancement, as shown in the subplot. Time–intensity
curves from multivoxel tumor ROIs (over 100 voxels per
ROI) in four subjects are shown in Figure 3b. Regional
averaging from the large ROIs and relatively slow signal
variation enables accurate reproduction of the contrast
dynamics at all acceleration factors investigated. Overall,
exceptional fidelity was observed in the contrast dynam-
ics considering the small matrix size (only 186 � 10
phase- and slice-encodes) and the high acceleration rates
considered.

Typical Ktrans and vp maps obtained with fully
sampled and retrospectively undersampled data are
shown in Figure 4. Parameter maps appear stable as the
acceleration rate is increased. In all cases, regions with
high permeability can be readily discerned and the

Table 1
Linear Regression Parameters Relating Pharmacokinetic Modeling

Outputs Obtained from Retrospectively Undersampled to Fully
Sampled Images

Acceleration
rate

Ktrans vp

Slope Intercept R2 Slope Intercept R2

3� 1.001 0.0003 0.99 0.991 0.0027 0.98

6� 1.078 �0.0036 0.96 0.985 0.0060 0.95
9� 0.972 0.0025 0.95 0.971 0.0041 0.93
12� 0.980 0.0016 0.92 0.953 0.0116 0.88

15� 1.095 �0.0013 0.92 1.019 0.0051 0.88
18� 1.033 0.0030 0.90 0.983 0.0061 0.84

FIG. 6. Representative raw images acquired with a 36� acceleration. Images were acquired coronally, but thin slices enable effective

axial and sagittal reformats. Full brain coverage with high spatial resolution ensures acquisition of the entire brain tumor and potential
metastases and enables reliable sampling of the AIF since numerous arterial and venous structures are readily visible. Slice locations

are indicated with dashed lines. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]
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fractional plasma volume is consistent at all acceleration
rates. Subtle features remain preserved in both parame-
ters despite the slight loss of resolution in the source
images (presented above in relation to Fig. 2. Noise
amplification is observed with increased acceleration,
particularly in vp, but expected given the vast amount of
discarded data.

Bland–Altman plots in Figure 5 and linear regression
parameters in Table 1 indicate that the proposed sam-
pling scheme and reconstruction method can be
employed for accurate pharmacokinetic modeling. Slopes
(see Table 1) relating accelerated to fully sampled

parameters deviate by less than 10% and no divergence
is observed as the acceleration rate is increased. The
most substantial mean difference reported in the Bland–
Altman plots for Ktrans is �0.0049 min�1 and occurs with
18-fold acceleration. Increased variance in the parameter
maps is the primary effect of acceleration with retrospec-
tive data: the R2 values in Table 1 decrease and the
standard deviation bars in Figure 5 widen with increas-
ing acceleration rate. This is consistent with the images
shown in Figure 4 where overall map appearance
remains constant at all acceleration rates, but noise is
amplified. The Bland–Altman plots report a rate depend-
ent overestimation in Ktrans (N.B., values are overesti-
mated when the difference is negative). This bias occurs
more strongly at high acceleration rates than at lower
rates: it is negligible at rates up to, and including, 12�,
and never exceeds 10% overestimation at 15� and 18�.
This is caused by signal attenuation in the AIF (Fig. 3)
and is discussed below. No bias was observed in vp. We
conclude that acceleration and constrained reconstruc-
tion can provide highly accurate pharmacokinetic model-
ing, irrespective of the acceleration rate but is limited by
the signal-to-noise ratio.

Prospective Study

Figure 6 contains representative images reconstructed
from highly accelerated data during maximal vascular
signal enhancement. These images represent a consider-
able improvement relative to our center’s typical DCE
protocol: voxel volume is reduced by 4.5�, slice cover-
age is improved by 33�, and temporal resolution is
reduced by 1.2�. Thin slices enable effective multiplanar
reformats and full brain coverage ensures that the entire
pathology is acquired. Images—particularly the axial
reformat, revealing both phase-encode dimensions—
show no residual aliasing artifact and features of similar
size to the acquired resolution are visible. Signal-to-noise

FIG. 7. Vascular time–intensity curves from 10 different subjects.
Five 36�-accelerated scans are shown with solid lines and cool
colors (blue/purple); five fully sampled scans are represented with

dotted lines and hot colors (red/yellow). Contrast dynamics of the
accelerated scans are consistent with fully sampled data: no pre-

mature contrast arrival or washout is observed, maximum
enhancement appears unaffected, and intrasubject variability is
equal to, or reduced, in accelerated relative to fully sampled

images.

FIG. 8. Permeability and fractional

plasma volume maps from a glioblas-
toma multiforme patient obtained with

the 36� accelerated DCE protocol (raw
images in Figure 6. Thin slices permit
axial and sagittal reformats. High reso-

lution maps allow for detailed visualiza-
tion of the tumor structure and full
brain coverage ensures that the entire

tumor is quantified.
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ratio, although difficult to quantify, remains adequate to
perform pharmacokinetic modeling.

Vascular time–intensity curves from five prospectively
accelerated images, chosen randomly from our cohort of
eight, and from five fully sampled images from different
patients are presented in Figure 7. Curves were time-
shifted and intensity scaled to account for different
injection delays, transit times, concentrations, and image
scaling. Comparison of these curves suggests that the
contrast dynamics are being accurately detected: no pre-
mature arrival or delayed washout is observed in the
accelerated cases. The average peak signal enhancement
is slightly greater in the accelerated case than in the fully
sampled data, likely due to a combination of improved
temporal resolution and reduced partial volume effects.

Permeability and plasma fraction maps are shown in
Figure 8 for a glioblastoma multiforme patient acquired
with the 36� accelerated protocol (raw images in Fig. 6).
Permeability maps appear as expected: vascular leakage
is confined to the tumor and to tissues lacking the blood
brain barrier (such as the meninges and muscle). No
leakage is observed in the healthy parenchyma. Fine
detail, comparable to the acquired resolution, can be
seen within the tumor on Ktrans maps. vp maps show ele-
vated vascularity within the tumor and correlate with tu-
mor permeability. The noise level in the vp maps
indicates this protocol is near the signal-to-noise ratio
limit for pharmacokinetic modeling.

Accuracy of prospectively accelerated Ktrans and vp are
presented in Figure 9. Individual data points represent
average values from nasal turbinate mucosa ROIs of sub-
jects imaged with either the accelerated or the standard
protocol. Intersubject averages are reported with the
filled boxes; error bars indicate 61 standard deviation.
No significant Ktrans difference (P¼ 0.67) was observed
between groups. The accelerated protocol had a standard
deviation that was 56% of the fully sampled protocol’s.
This is attributed to more reliable ROI placement in the
accelerated case rather than fundamentally reduced

variance. A significant difference (P¼ 0.003) in plasma
fraction was observed between groups. This bias is attrib-
uted to partial volume averaging between nasal turbinate
mucosa tissue and surrounding vasculature that
increases the apparent plasma fraction of the fully
sampled cases; high resolution diminished this effect in
the accelerated protocol.

DISCUSSION

The objective here was to develop and validate an accel-
erated method for dynamic imaging applied to DCE MRI.
We invented a sampling scheme that enables combined
PI and CS for dynamic applications and proposed
reconstruction constraints that provide accurate image
reconstruction. This method was validated with a retro-
spective analysis of fully sampled data and with
prospectively accelerated data.

Data was acquired according to a novel variable den-
sity Poisson ellipsoid scheme. This approach defines a
set of sampling locations that balance random sampling
with uniform spacing and incorporates increased density
in the center of k-space. This approach is compatible
with various array coil geometries and matrix sizes mak-
ing it flexible and robust; however, computation time
(typically about 5–120 s per dynamic table) favors pre-
computation over real-time construction. Alternate sam-
pling strategies, such as Cartesian radial (24,25) may also
prove effective for DCE imaging.

We opted to include multiple reconstruction con-
straints, including a 4D wavelet, temporal filtering, and
spatial finite differences. We anticipate complementary
behavior from these constraints: the temporal filter pro-
motes a smoothly varying time-course, but is voxel-inde-
pendent. The wavelet transform provides both temporal
and spatial compression, but imposes edge artifacts. The
total variation constraint partially attenuates these edge
artifacts and promotes a smoothly varying image. Regula-
rization factors were selected empirically and, admit-
tedly, limit direct reproduction of this work. Future
efforts should be directed to automatically tune such
variables.

Image Quality

The retrospective study simulated acceleration rates
between 3� and 18� and proved to be challenging.
These rates are substantial given the small matrix size:
only 104 encodes remain in each time frame at 18�.
Thin axial slabs obstruct PI efficacy in the slice-encode
direction, effectively offloading the reconstruction bur-
den to the CS sparsity constraints. Despite these chal-
lenges, exceptional image quality is observed, Figure 2.
The most severely affected regions are small blood ves-
sels, further illustrated in Figure 3a. These small struc-
tures are most vulnerable to distortion from the spatial-
temporal constraints since their contrast is encoded into
the periphery of k-space, which is sampled least
densely.

Although 18� was the maximum acceleration consid-
ered retrospectively, this rate does not translate directly
to prospectively undersampled data. Prospective images
were acquired in the coronal plane to leverage the

FIG. 9. Ktrans (left) and vp (right) values measured in the nasal mu-
cosa of sixteen patients using prospectively accelerated (blue,

circles) and fully sampled DCE images (red, diamonds). Ktrans val-
ues did not differ significantly between groups. A significant differ-

ence was observed in vp; this was attributed to partial volume
effects in the fully sampled case between tissue and the sur-
rounding vasculature, which inflates vp. [Color figure can be

viewed in the online issue, which is available at
wileyonlinelibrary.com]
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receive coil geometry for 2D PI. This, combined with
much higher matrix sizes than the retrospective study,
justified the 36� acceleration rate employed in this
work. Each time frame contained 912 samples, and new
frames occurred �2.5� more frequently than the retro-
spective study. Relative to the 18� retrospective data,
prospective cases had �21� more data per unit time;
direct extrapolation of retrospective results to the pro-
spective case is misleading.

In the prospective study, acceleration was used to ac-
quire high resolution images with full brain coverage.
This strategy rapidly depletes the signal-to-noise ratio
while requiring more samples for volume encoding;
higher acceleration rates are likely possible if lower spa-
tial and higher temporal resolution are prescribed. De-
spite low signal-to-noise ratio, anatomical features are
clearly discernable in the prospective images, Figure 6;
furthermore, temporal signal degradation was not
detected, Figure 7, which bodes well for accurate phar-
macokinetic modeling, Figures 8 and 9.

Accuracy

This study aimed to quantify acceleration-induced errors
in pharmacokinetic modeling parameters. Retrospective
analysis provides a convenient gold standard but is lim-
ited by small matrix sizes (186 phase-encodes, 10 slice-
encodes, and 35 time frames) and a temporal resolution
(10 s) that fails to resolve all dynamic features. Further-
more, subsampling a fully sampled data set fails to
improve the temporal resolution. Prospective accelera-
tion enables large array sizes and/or high temporal reso-
lution but lacks an intrinsic reference. Both studies
suggest that pharmacokinetic modeling remains accurate
at high acceleration factors. The signal-to-noise ratio and
distortion of the AIF are two limiting factors to consider
when designing accelerated DCE protocols.

Our retrospective analysis reports both over- and under-
estimation of Ktrans with no diverging trend as the accelera-
tion rate is increased, Table 1. Bland–Altman plots, Figure
5, confirm that no bulk bias is present. As with conven-
tional PI, noise remains the primary limiting factor. Bland–
Altman plots indicate slight (<10%) rate dependent Ktrans

errors at high acceleration. This bias results from temporal
distortions of small vascular structures, which were used
to define AIFs for pharmacokinetic modeling, during bolus
arrival, Figure 3a (inset). Signal attenuation during maxi-
mal enhancement causes a temporary underestimation of
the contrast agent in the plasma. Rapidly enhancing tissues
show substantial signal changes during this period but are
less attenuated by the acceleration/constrained reconstruc-
tion than the AIF, Figure 3. This results in a rate depend-
ent exaggerated permeability. We believe, although have
not verified, that this trend would be reduced or elimi-
nated if larger vascular structures (these were not reliably
available with the retrospective data) or population derived
AIFs are employed.

To date, few studies have reported the accuracy of CS-
accelerated DCE imaging. Smith et al. (16,17) report
accurate pharmacokinetic modeling at low acceleration
rates although show considerable Ktrans underestimation
in human data and overestimation in mouse data. Chen

et al. (15) report very slight underestimation of Ktrans and
kep but do not employ a patient specific AIF, where we
observed the greatest potential for bias. Han et al. (18)
performed a retrospective and prospective analysis of 2D
DCE imaging. They report a concordance correlation
coefficient of 0.83 6 0.11 (mean 6 s.d.) at 8� acceleration,
although it is unclear if this represents a loss of accuracy
or of precision. Together, existing literature and the pres-
ent study suggest that CS and PI are viable techniques
for accurate DCE imaging.

Limitations

There are numerous limitations of this study that could
not be addressed succinctly in this manuscript. Consid-
erable analysis hinged on visual assessment of image
quality. Raw images, time–intensity curves, and parame-
ter maps were presented for qualitative appraisal and
regularization parameters in Eq. [3] were tuned empiri-
cally based on image appearance. Although suboptimal,
quantitative metrics for image quality are not yet avail-
able for CS reconstructed images and simple metrics,
like mean squared error or signal-to-noise, are not indica-
tive of actual image quality. In all cases, typical data and
image quality was presented.

Validation of the proposed method was performed
with a retrospective analysis of fully sampled data and
with a comparison between a cohort of prospectively
accelerated patient scans and a separate population of
fully sampled data. Both approaches have limitations
and improved validation should be performed. A case
control study involving fully sampled and prospectively
accelerated scans in the same patient would reduce
intersubject variability and more fully characterize the
accuracy and precision of this method.

Numerous software packages exist for DCE modeling
and substantial variation in image processing, model-
ing, and fitting routines exist. We employed TOPPCAT
(23), a freely available package. This software performs
no image processing, as desired to isolate acceleration
and reconstruction errors, and extracts the AIF from a
user defined ROI placed on the raw DCE images. This
package does not estimate ve, the extravascular-extracel-
lular space, a standard output in DCE modeling (2).
Inclusion of this parameter is desirable, but was not
available.

Modeling inputs were observed to generate variations
in Ktrans and vp that exceed acceleration-induced errors.
Permeability and plasma volume were particularly sensi-
tive to the AIF; considerable effort was invested in care-
ful and consistent selection of the region defining the
AIF.

Truly quantitative modeling requires baseline tissue T1

values (1,9). Throughout this work, we assumed a T1

value of 1.0 s. This prevents absolute quantitation, but
does not compromise our findings, which demonstrate
that acceleration and constrained reconstruction are
compatible with permeability modeling. Although not
shown, a fully sampled case was reprocessed assuming
T1 values of 0.8, 1.0, and 1.2 s. Average Ktrans in an
enhancing tumor differed by less than 0.4%; vp by 1.7%;
R2 by 0.03%.

Accelerated DCE Imaging 643



Current reconstructions times (�8 h) preclude real-
time assessment or modeling. Although the reconstruc-
tion is iterative, all sparsity transforms and operations
are highly parallelizable; additional parallel computing—
via GPGPU’s or distributed computers—may vastly
reduce the reconstruction time.

CONCLUSION

We have invented a sampling and reconstruction tech-
nique for highly accelerated dynamic MRI using PI and
CS. This method was shown to provide accurate DCE
permeability imaging: double-digit acceleration factors
are readily achievable without loss of accuracy in Ktrans

or vp. This approach enables large field-of-view DCE
imaging with high spatial-temporal resolution.
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