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Off-resonance generates blurring artifacts in spiral images.

Applications that often utilize spiral trajectories, such as fine-
resolution imaging and rapid scanning, typically preclude the

measurement of accurate field maps needed for effective off-
resonance correction. Automatic deblurring, or autofocus,
algorithms have been developed to estimate the field map

directly from the corrupted data prior to off-resonance correc-
tion, eliminating the need for field map measurements. These

algorithms rely in whole or in part on optimizing an objective
function, and suffer from problems related to the accurate min-
imization and utility of the function. Here, a new method is pre-

sented to correct off-resonance blurring automatically without
an objective function using a piecewise linear framework. Local
linear field maps are estimated with a combination of k-space

spectral analysis and mapdrift, an image feature-based corre-
lation technique, for subsequent piecewise linear deblurring.

This approach enables field map estimation without optimiza-
tion, provides accurate off-resonance correction, is suitable for
low signal-to-noise ratio and fine-resolution applications, and

does not require access to the raw data. Deblurred images
from fine-resolution spiral scans of a phantom and healthy vol-

unteers at 3T show that the proposed method can be superior
to conventional autofocus and comparable to field map-based
correction. Magn Reson Med 69:82–90, 2013. VC 2012 Wiley
Periodicals, Inc.
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With spiral imaging, a significant advantage and a criti-
cal weakness share the same underlying cause. The two-
dimensional variation along each spiral readout enables
full utilization of the gradient hardware and provides
time-efficient k-space coverage. However, it also gener-
ates radially increasing k-space phase errors in the pres-
ence of off-resonance, causing blurring and distortion of
the reconstruction kernel. Shorter readout times reduce
these errors but necessitate additional spiral arms and
longer scan times, negating the time-efficiency benefit.

Several methods have been developed to correct off-
resonance blurring using a measured field map of the
spatial distribution of off-resonance frequencies (1–5). As
these strategies typically apply locally zeroth-order cor-
rection via pixel-by-pixel center frequency adjustments,
they require the field map to be nearly constant across

the width of the point spread function. Consequently,
they can correct spatially smooth phase errors, which of-
ten occur with B0 field inhomogeneity but may not accu-
rately model susceptibility and chemical changes around
tissue interfaces. More importantly, the deblurring effec-
tiveness is limited by the fidelity of the measured field
map, which may be inaccurate due to signal loss, subject
motion, phase wraps, or poor resolution including intrin-
sic blurring artifacts. Measuring an accurate field map
requires additional scan time and is often infeasible in
fine-resolution and time-sensitive imaging experiments.

Automatic deblurring (autofocus) methods estimate the
field map directly from the acquired data before compen-
sating the phase errors. Current techniques (6–9) rely in
varying degrees on optimizing a focus metric. The opti-
mization has usually been some variant of minimizing
the imaginary image, first proposed by Noll et al. (6),
which can be inaccurate because of false minima.
Improvements to the focus metric (10) and augmentation
with low-resolution field map information (11) have been
suggested, but the metrics still require the prescient re-
moval of all image phase unrelated to the off-resonance
and generally lack robustness. The KESA approach by
Truong et al. (9) is notable for its incorporation of a signal
physics model to supplant, at least partially, the reliance
on a focus metric. In essence, these optimization-based
autofocus methods have replaced the limitations stemming
from field map inaccuracy with limitations of the focusing
metric. Autofocus techniques have been mostly restricted
to low-resolution or low field strength applications.

In this study, we present an automatic off-resonance
correction algorithm, called piecewise linear autofocus,
that does not use focus metrics. As with (4), it performs
block-based processing of the blurry image, but instead
estimates a piecewise linear field map using signal
physics and then performs locally first-order correction.
Compared to other autofocus algorithms, the piecewise
linear framework in the proposed method enables field
map estimation without a focus metric, more accurately
corrects rapidly varying off-resonance, and provides
noise robustness—which is important for fast and fine-
resolution scans with low signal-to-noise ratio (SNR).
Spiral imaging experiments with phantom and volunteer
data at 3T indicate that the proposed autofocus tech-
nique can be superior to conventional autofocus and
comparable to conventional field map-based deblurring.

THEORY

The primary stages of the piecewise linear autofocus
algorithm are field map estimation, field map smoothing,
and off-resonance correction (Fig. 1). The algorithm,
which requires as inputs only the blurry complex image
and the trajectory time map, divides the image into blocks
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and performs automatic linear field map estimation and
correction on each block before recombining them into the
final image. Prior to correction, the individual linear field
maps from each block are joined into a piecewise linear
field map, which undergoes regularized smoothing to
minimize artifacts from discontinuities along the block
boundaries. The next sections describe the linear off-
resonance model, estimation strategy, and details of the
piecewise linear processing framework.

Linear Off-Resonance

Neglecting relaxation, off-resonance, coil sensitivity and
noise, the signal equation for an MR scan of an object
with spin density mðx; yÞ is

sðtÞ ¼
Z Z

mðx; yÞe�j2pðkxðtÞxþky ðtÞyÞdxdy; ½1�

where kx(t) and ky(t) are the x and y and components of
the k-space trajectory at time t. The time map for a nono-
verlapping k-space trajectory is denoted by t(kx,ky) and
can be useful in rewriting the signal in terms of frequency
coordinates, s(t) ¼ s(t(kx,ky)) ¼ s(kx(t),ky(t)) ¼ s(kx,ky).

Off-resonance adds a space- and time-varying phase
term to the signal equation. Letting fo(x,y) be the spatial dis-
tribution of off-resonance in Hz, the corrupted signal so is

soðkx ;kyÞ ¼
Z Z

mðx; yÞe�j2pðkxxþkyyÞe�j2pfoðx;yÞtðkx ;ky Þdxdy:

½2�

If the off-resonance is modeled with an affine field then
fo(x,y) ¼ fc þ fxx þ fyy, where fc, fx, and fy represent the
constant and linear field coefficients. With this model,
the signal equation becomes

soðkx; kyÞ ¼ e�j2pfct

Z Z
mðx; yÞe�j2p½ðkxþfx tÞxþðkyþfy tÞyÞ�dxdy

½3�

in which the k-space dependence of the time map has
been hidden to improve clarity. The corrupted signal so

can be expressed in terms of the ideal signal s by com-
bining Eqs. 1 and 3.

soðkx; kyÞ ¼ e�j2pfctsðkx þ fxt;ky þ fy tÞ: ½4�

Equation 4 reveals the effects of the off-resonance com-
ponents. The linear coefficients cause a time-varying
shift of the k-space trajectory that will manifest as image
distortion and warping. The constant component pro-
duces a k-space phase modulation. For spiral trajectories,
the time map is approximately quadratic with k-space
radius, and this modulation becomes a quadratic phase
error that broadens (blurs) the point spread function.

Automatic Linear Off-Resonance Estimation

We assume a piecewise affine model for the field map
and estimate the local constant and linear coefficients in
each block of image pixels. Figure 2 shows a diagram of the
estimation steps for a block. Blocks are specified by their
field of view FOVb and are arranged in tight adjacency.
Blocks are padded with neighboring pixels to size FOVp to
improve estimation accuracy and mitigate blocking artifacts
in the image. The padded regions are discarded when proc-
essed blocks are recombined. In the estimation stage,
padded blocks are premultiplied with a Gaussian window
to emphasize the signal from the inner region and reduce
contamination from neighboring blocks. The k-space data
for each block are accessed through the 2D fast Fourier
transform at Cartesian frequency locations ðk0

x; k
0
yÞ. The tra-

jectory time map, which preserves the temporal character-
istics of the spiral trajectory, is linearly interpolated from
t(kx,ky) to tðk0

x; k
0
yÞ prior to processing.

We first estimate the local linear field map coeffi-
cients for the block. Denoting the k-space data for a par-
ticular block as soðk0

x ;k
0
yÞ, Eq. 4 can be rewritten as

sðk0
x; k

0
yÞ ¼ eþj2pfctsoðk0

x � fxt;k
0
y � fy tÞ: ½5�

At the echo time t ¼ TE, the gradient-induced phase
shifts across the object become zero and a gradient echo
causes a signal peak. From Eq. 5, the magnitude spec-
trum at the echo time becomes

FIG. 1. Overview of the pro-
posed algorithm. After each

block undergoes estimation, the
local coefficients (c) and weights
(W) are used to smooth the dis-

continuous piecewise linear map
(f). Linear off-resonance correc-

tion is then applied to the blocks
with the coefficients (cs) from the
smoothed field map (fs). [Color

figure can be viewed in the
online issue, which is available at
wileyonlinelibrary.com.]
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jsð0;0Þj ¼ jsoð�fxTE;�fyTEÞj; ½6�

which isolates the linear coefficients and relates them to
the location of the signal peak. If the peak of the acquired
signal so occurs at k-space location ðy0x; y0yÞ, then the linear
field map coefficients can be estimated with

fx ¼ �y0x=TE and fy ¼ �y0y=TE: ½7�

We measure the peak location after Fourier transform-
ing the block with zero-padding, which sinc-interpolates

the k-space data to increase the localization precision.

Estimating the linear coefficients from the spectral peak

is related to susceptibility gradient mapping (12) and the

KESA method for spiral image deblurring (9). With

KESA, large energy changes are detected at each image

pixel in response to varying the frequency support of a

partial Fourier reconstruction. In comparison, our block-

based approach has improved robustness because it uses

more samples—all pixels in the block—to form each esti-

mate and operates in the frequency domain where the

spectral peak is directly observable.
Before estimating the constant coefficient, the trajec-

tory shift is corrected to properly align the k-space data
with the time map. The k-space data for the block are
resampled from Cartesian grid locations ðk0

x; k
0
yÞ to

shifted locations ðk0
x � fxt; k

0
y � fy tÞ. We perform this

operation by regridding the block’s k-space data with
uniform density compensation. Note that there is no
advantage to estimating the constant coefficient before
the linear coefficients because the former involves only
the frequency-domain phase and does not influence the
location of the peak magnitude.

After the trajectory shift has been corrected, the constant
coefficient is estimated with the mapdrift technique (13),
which measures super-linear phase errors by examining the
drift between images reconstructed from two separate sub-
bands. As the fc-induced phase error is approximately

quadratic along a spoke in k-space (Fig. 3a), each half of
the spoke, or sub-band, has a strong but opposite linear
phase modulation that causes an equal but opposite transla-
tion in the image domain (Fig. 3b). Measuring this differen-
tial translation, or drift, by correlating the sub-band images
produces an estimate of the quadratic phase error ampli-
tude. To adapt the mapdrift technique to spiral MRI data,
we form sub-bands from k-space strips of width B (Fig. 3c).
We measure the drift twice—along x and y—with low-reso-
lution sub-band images and average the results. For exam-
ple, to measure the drift in the y-direction, we first extract
the strip defined by jk0

x j � B=2 from soðk0
x � fxt; k

0
y � fy tÞ

and then form two sub-bands defined by k0
y � �k and

k0
y � k (corresponding, respectively, to the blue and yellow

outlined regions in Fig. 3d). Each sub-band image is recon-
structed by inverse Fourier transformation before under-
going cross-correlation to measure the drift. The fc coeffi-
cient is estimated from the lag corresponding to the
correlation peak, which in the absence of errors will be
2fcTread, where Tread is the spiral readout duration.

Sub-band images are reconstructed with the FFT

which, although computationally efficient, has basis vec-

tors that do not follow the circular symmetry of the phase

error. During inverse Fourier transformation, projections

along the Cartesian axes result in phase averaging, reduc-

tion of the aggregate phase error amplitude, and a dimin-

ished linear phase differential between the sub-bands.

The drift will be attenuated by a factor of a, with 0 < a �
1, that depends on the sub-band size and distribution of

k-space energy, and causes fc underestimation.
The sub-band size is chosen to balance this attenua-

tion with the effectiveness of the correlation. Attenuation
is minimized with the smallest possible sub-bands,
defined by B ¼ 1/FOVp (narrow) and k ¼ 0 (nonoverlap-
ping), so that a is near unity. Increasing the width B
yields finer sub-band image resolution and reveals more
features to correlate, but increases the phase averaging
during projection and reduces a (Fig. 3e). Increasing the
overlap k leverages the natural apodization of the

FIG. 2. Flow chart of the linear field map estimation (gray) and correction (black) performed on each block. The local linear coefficients
(fx,fy) are estimated from the spectral peak location, and the constant coefficient (fc) is estimated with the mapdrift technique. Mapdrift proc-
essing is performed along both the x and y directions, but only the latter is shown. Reconstructed sub-band images (yellow and blue) are

superimposed to demonstrate the differential translation detected by mapdrift. The smoothed coefficients are used for the final correction.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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k-space data to mitigate interference from sidelobes dur-
ing correlation, but reduces the phase difference between
the sub-bands (Fig. 3f). We experimented with various
sub-band sizes to balance these diametric behaviors and
achieved good results with B ¼ 0.5/d, where d is the
image resolution, and k ¼ 1/FOVp, meaning one overlap-
ping frequency in addition to DC.

Individual calibrations could be performed for each
block to measure a and correct the underestimation. To
reduce computational overhead, we instead estimate fc
iteratively. Starting with an initial estimate of zero, we
compensate the fc-induced error in the block with a conju-
gate phase multiplication by exp(j2pfct) and then perform
mapdrift to update the estimate, repeating these steps until
convergence. Depending on the anatomical features and
residual off-resonance in the block, the estimate may oscil-
late between frequencies; in this situation, we assign the
average frequency to the estimate. We are currently inves-
tigating the suitability of polar Fourier transforms as an
alternative for more efficient mapdrift estimation.

After mapdrift processing, the trajectory-adjusted
and phase-compensated k-space data for the block are
reconstructed with inverse Fourier transformation to pro-
duce an initially corrected image block.

Field Map Smoothing

As the blocks are processed independently, combining
them after initial correction could produce image artifacts
similar to those observed in other block-based approaches
(4). The combined piecewise linear field map could also

have discontinuities along the block boundaries. To mini-
mize these discontinuities and the associated image arti-
facts, we smooth the combined field map while maintain-
ing its piecewise linearity and then perform the final off-
resonance correction with the smoothed map.

The combined field map is smoothed within a piecewise
linear subspace by penalizing the discontinuities along the
(unpadded) block boundaries. The original field map esti-
mate f is factored into a piecewise linear basis A and coeffi-
cient vector c so that f ¼ Ac. For an N � N image that has
been divided into a total of M blocks, f is N � N, A is N2 �
3M, and c is 3M � 1. We perform the smoothing by solving
the following Tikhonov regularization problem (14)

min
cs

jjf s � f jj22;w þ l jjDxf sjj22 þ jjDyf sjj
2
2

� �
½8�

for the smoothed coefficients cs, where fs ¼ Acs is the
smoothed field map. The first term in Eq. 8 is a weighted
penalty for the smoothing error. The diagonal weighting
matrix W is formed from the initially corrected blocks
and contains the average image intensity for the block to
which each pixel belongs (Fig. 1). The second term
penalizes discontinuities along the block boundaries
using second-order difference operators Dx and Dy.

Equation 8 is convex and has the analytical solution
cs ¼ (ATWA þ lD)�1f, found by gradient minimization
(14). This yields the following expression for the
smoothed field map

f s ¼ AðATWAþ lDÞ�1f : ½9�

FIG. 3. The mapdrift technique estimates super-linear phase errors. a: Dividing the spectrum into two sub-bands creates strong but
opposite linear phase components (yellow and blue) from the approximately quadratic phase error (black). b: Reconstructing the sub-
bands produces a differential translation that is proportional to the phase error and measured with correlation. c: In spiral imaging, off-

resonance will generate a quadratic phase error and point spread function blurring because the trajectory time map is approximately
quadratic with k-space radius. To measure the phase error, we perform mapdrift processing using two strips of k-space data of width B

(0 < B = 1/d with d ¼ image resolution). d: Each strip is divided into two sub-bands that are overlapped by k before being reconstructed
into images and correlated. e: The effect of B on mapdrift accuracy. Smaller B reduces sub-band image resolution but better preserves
the quadratic phase profile across the strip. f: The effect of k on mapdrift accuracy. Larger k reduces energy from interfering sidelobes,

but also reduces the differential translation and shifts the peak correlation lag toward zero.
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Here, D ¼ ATðDT
xDx þDT

yDyÞA and ATWAþ lD � 0 for
any k > 0. The parameter k is chosen to balance the
smoothing strength with the error; in our experiments,
we obtained good performance with 1 � k � 5. We use
sparse arrays for the large matrices to improve computa-
tional efficiency.

Piecewise Linear Off-Resonance Correction

Once the field map coefficients are known, Eq. 5 sug-
gests the following piecewise correction strategy for each
padded block (Fig. 2): warp the corrupted data to correct
the trajectory shift and then remove the undesired phase
modulation with a conjugate phase multiplication (5).
We perform these operations on soðk0

x ;k
0
yÞ, the k-space

data from the padded block, using the smoothed coeffi-
cients for the block from cs. After correction and inverse
Fourier transformation, the padded regions are discarded
and the blocks are recombined to form the final
deblurred image. This locally first-order strategy can pro-
vide better image quality than locally zeroth-order meth-
ods in regions containing fine anatomical details and
rapidly varying off-resonance (15).

In our experiments, the trajectory shift was not sig-
nificant enough to necessitate correction of the density
compensation function. For larger shifts, postgridding
compensation as described by Irarrazaval et al. (5) could
be applied to the block although Chen and Meyer (8)
noted limitations with deapodization in this approach. A
more accurate but computationally expensive alternative
for correcting a block is to reconstruct an entire image by
regridding the raw spiral data with the shifted trajectory
and commensurately adjusted density weighting, and
then retaining only the pixels belonging to the block.

METHODS

We performed fine-resolution spiral imaging of a phan-
tom and cardiovascular scans of healthy volunteers. All
volunteers were screened for contraindications and pro-
vided informed consent in accordance with institutional
policy. Experiments were performed on a Signa Excite
HD 3T system (GE Healthcare, Waukesha, WI) with
40 mT/m maximum gradient amplitude, 150 T/m/s maxi-
mum slew rate, and 4 ms receiver sampling interval. We
acquired 2D multislice spoiled gradient echo scans with
uniform-density spiral trajectories and 55� spectral spa-
tial RF excitation (16) to attenuate signal from fat. The
slice thickness was 5.0 mm and three to five slices were
acquired per scan. All acquisitions used body coil trans-
mission and an eight-channel phased array cardiac coil
for reception, and were preceded by automatic prescan
calibration and gradient shimming. Motion artifacts were
controlled with breath holding and ECG gating. Spiral
images were initially reconstructed using gridding with
Jacobian density compensation (17) and inverse Fourier
transformation. Multicoil data were combined with
phase-sensitive reconstruction (18); parallel imaging was
not used. Data processing was performed with Matlab
(Mathworks, Natick, MA).

One spiral shot was acquired for each echo per slice
per heartbeat. The TR varied between 700 and 1100 ms

depending on the volunteer’s heart rate. Two echoes
were acquired to create field maps to compare our
method with field map-based correction. The second
echo was acquired immediately after the first to mini-
mize registration errors from motion. An echo spacing of
1.6 ms was used to produce field maps with 625 Hz of
off-resonance bandwidth, which was chosen to avoid fre-
quency aliasing due to phase wrapping. Trajectory pa-
rameters for the first echo were 16 shots, TE ¼ 2.0 ms,
and d ¼ 0.7–1.0 mm. Note that d is the error-free resolu-
tion, or the point spread function mainlobe width in the
absence of off-resonance. Parameters for the second echo
were 16 shots, TE ¼ 3.6 ms, and d ¼ 2.0 mm. The FOV
was 22.0–28.0 cm depending on size of the volunteer,
resulting in Tread durations of 15.9–25.6 ms for the first
echo and 3.6–4.3 ms for the second. For the phantom
scan, FOV ¼ 16 cm, d ¼ 0.5 mm for the image, and d ¼
2.0 mm for the field map.

We compared piecewise linear autofocus with con-
ventional autofocus and field map-based off-resonance
correction in 15 data sets from eight volunteers. Piece-
wise linear autofocus was run with a 5 � 5 block padded
to 40 � 40 (FOVb ¼ 3.5–5.0 mm and FOVp ¼ 28–
40 mm), Gaussian window with standard deviation
FOVp/2, and smoothing parameter l ¼ 2. These values
were experimentally determined based on data from two
volunteers and subsequently used for all data sets. With
multicoil data, we independently estimated the local
field map coefficients for each channel and then aver-
aged the coefficients with weights derived from the total
channel energy in the block. For field-map based deblur-
ring, we used frequency-segmented conjugate phase
reconstruction (1) with 4(fmax � fmin)Tread demodulation
frequencies (4). Chen and Meyer (11) observed no visible
differences between this and other methods of conjugate
phase reconstruction. Field maps were generated from
the second echo and the central k-space region of the
first echo. For conventional autofocus, we used the
method by Noll et al. (6) with the improved objective
function proposed by Lee et al. (10). The data were
demodulated with the same set of demodulation frequen-
cies used by field map-based deblurring; normally the
minimum and maximum frequencies would be guessed,
but without this knowledge a priori the spurious minima
often confused the optimization and exacerbated the off-
resonance artifacts. Before evaluating the focus metric,
the low pass image phase was removed from each
demodulated image. The low pass cutoff frequency klo
was manually adjusted for each data set to give the best
performance. The integration window was similarly tai-
lored to each data set. As with the proposed autofocus
method, the frequency estimates from multiple coils
were combined with weighted averaging.

RESULTS

Conventional autofocus yielded a variable improvement
in image quality. Every image contained obvious residual
blurring artifacts, and several images showed exacer-
bated artifacts despite the efforts to boost the algorithm’s
performance. Furthermore, deblurring performance was
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inconsistent in anatomically similar regions from differ-
ent volunteers.

In comparison, field map-based conjugate phase
reconstruction provided consistently good deblurring
performance in every data set, as expected. In several
images, minor residual blurring was still apparent.

Piecewise linear autofocus provided better off-reso-

nance correction than conventional autofocus for every

data set, and in most cases its images were comparable to

field map-based deblurring. Of the images deblurred by

the proposed method, most contained at least one region

that was obviously sharper than the corresponding region

in the conjugate phase reconstructed image, and about half

contained some slight residual blurring. We observed no

instances of exacerbated off-resonance artifacts, however.

Phantom results are shown in Fig. 4. Figure 4a is the
original blurry image. Figure 4b is the result of conjugate
phase reconstruction and shows effective off-resonance
correction although some residual blurring is visible. Fig-
ure 4c is the image after piecewise linear autofocus and
shows no residual blurring artifacts, most likely because
of the strong image contrast. Figure 4d is the image after
conventional autofocus with klo ¼ 0.01/d and a 30 � 30
integration window and shows minor residual artifacts.
Figure 4e–g shows the field maps from measurement,
estimation by the proposed method, and estimation by
conventional autofocus, respectively. When the esti-

mated piecewise linear field map is used with conjugate
phase reconstruction instead of piecewise linear correc-
tion, the resulting image is almost identical to that in
Fig. 4c. This suggests the field map estimated by the pro-
posed algorithm is more accurate than the measured one.

Figure 5 shows representative deblurring results

with d ¼ 0.7 mm spiral imaging. For this scan, FOV ¼ 22

cm and Tread ¼ 20.1 ms. Figure 5a is the original image

without off-resonance correction. Figure 5b is the image

after conjugate phase reconstruction and shows minor re-

sidual blurring around the spine and aorta. Figure 5c is

the image after piecewise linear autofocus. The image is

visually comparable to the result from field map-based

correction. Minor residual blurring is apparent in the

chest wall, but regions near the aorta and spine appear

sharper in the autofocused image. Figure 5d is the image

after conventional autofocus with klo ¼ 0.05/d and a

50 � 50 integration window. The chest wall appears

slightly sharper than with the proposed algorithm, but

moderate residual blurring is apparent near the spine

and coronary artery. We applied the two-stage approach

by Man et al. (7) to correct these residual artifacts, but

found no improvement in image quality. Figure 5e–g

shows the field maps from measurement, estimation by

the proposed method, and estimation by conventional

autofocus, respectively. The agreement between the field

map estimated by the proposed method and the

FIG. 4. Comparison of different off-resonance correction methods in a spiral scan of a phantom. The bottom corners in (a–d) show
zoomed-in results. a: Original image without off-resonance correction. This is the input to the proposed autofocus algorithm. b: Image
after correction with the measured field map (e) using frequency-segmented conjugate phase reconstruction. Minor residual blurring due

to uncorrected off-resonance is visible. c: Image after piecewise linear autofocus. Off-resonance artifacts are not apparent. d: Image af-
ter conventional optimization-based autofocus. Some residual off-resonance artifacts remain. e: The measured field map. f: The esti-
mated piecewise linear field map. The block sizes (with and without padding) are shown in the lower right. g: The estimated field map

from conventional autofocus. The integration window size is shown in the lower right. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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measured field map is poor in featureless regions regions

due to underestimation of the local constant coefficients.

However, the residual blurring from uncorrected off-reso-

nance in these areas is not apparent.
Deblurring results using data from only one coil are

shown in Fig. 6. The signal from the right coronary ar-
tery has low SNR because of the reduced sensitivity in
the posterior receiver coil. Figure 6b shows the original,
uncorrected single-coil image. Figure 6c is the image
after conjugate phase reconstruction using the field map
derived from the full multi-coil data (Fig. 5e). Figure 6d
is the image after piecewise linear autofocus and is simi-
lar to the result from field map-based correction. Figure
6e is the image after conventional autofocus and shows
no improvement over the original image. The SNR in the
coronary cross-section is approximately 3.5 in the origi-
nal image, 5.0 after conjugate phase reconstruction, 4.7
after piecewise linear autofocus, and 3.4 after conven-
tional autofocus.

As shown in Figs. 4 and 5, the proposed autofocus
algorithm can produce better image quality than field
map-based conjugate phase reconstruction. We explored
two possible reasons for this: the field map estimate may

FIG. 5. Comparison of different off-resonance correction methods in a spiral cardiac scan of a healthy volunteer. Zoomed-in areas near

the coronary artery (white box) and spine (yellow box) are shown along the right edge in (a–d). a: Original image without off-resonance
correction. b: Image after correction with the measured field map (e) using frequency-segmented conjugate phase reconstruction. Some

slight blurring is still apparent around the aorta (arrow). c: Image after piecewise linear autofocus. The result is comparable to the field
map-based deblurring. d: Image after conventional optimization-based autofocus. Residual off-resonance artifacts are obvious. e: The
measured field map. f: The estimated piecewise linear field map. In featureless regions (arrowheads), the field map is underestimated

although this is not problematic. The block sizes (with and without padding) are shown in the lower right. g: The estimated field map
from conventional autofocus. The integration window size is shown in the lower right. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

FIG. 6. Off-resonance correction of low-SNR data. a: Full image

from one coil showing a low SNR region around the right coronary
artery (yellow box). b: No off-resonance correction (coronary SNR

¼ 3.5). c: Correction with frequency-segmented conjugate phase
reconstruction using the measured field map (SNR ¼ 5.0). d: Cor-
rection with piecewise linear autofocus (SNR ¼ 4.7). The result is

similar to field map-based correction. e: Correction with conven-
tional autofocus (SNR ¼ 3.4). The images in (b–d) have been
clipped to show more detail. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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be more accurate than measurement (Fig. 7b,c), and
piecewise linear correction may provide more accurate
correction than locally zeroth-order methods (Fig. 7c,d).
In our experiments, we found more evidence supporting
the former reason and only a few examples of the latter.
In most cases when our autofocus algorithm provided
superior sharpness, we could greatly close the gap in
image quality by rerunning conjugate phase reconstruc-
tion with the estimated piecewise linear field map. Only
in rare cases were the anatomical features fine enough
and the off-resonance variations large enough that we
could attribute the sharpness enhancement solely to the
higher-order correction (Fig. 7d). Although the piecewise
linear framework imparts robustness to the field map
estimation stage, its necessity in the correction stage
requires further investigation. Nonetheless, we did not
find evidence that piecewise linear correction produced
results worse than conjugate phase reconstruction when
both methods were run with the same field map.

DISCUSSION

Piecewise linear autofocus is noise robust because of its
two estimation strategies. The local linear coefficients
are estimated from the spectral peak, which has the high-
est SNR of all acquired k-space data. During the estima-
tion of local constant coefficients, errors are reduced by
the inherent averaging within the correlation operation
and by averaging the results from the two strips.

The proposed algorithm requires only the blurry com-
plex image and the trajectory time map as inputs. In our
experiments, we supplied the coil-separated images, but the
algorithm also accepts coil-combined images. As it does not
require access the raw k-space data, it can be easily incorpo-

rated into existing image reconstruction pipelines. The final
deblurred complex images are compatible with other arti-
fact correction methods and postprocessing techniques.

The proposed autofocus algorithm is easier to use
than conventional autofocus, which has many tuning pa-
rameters—including the integration window size, choice
of demodulation frequencies, low-pass cutoff frequency
for phase removal, and possibly multi-scale block sizes
(7)—which preclude truly automatic use. In comparison,
the primary tuning parameter for piecewise linear autofo-
cus is the block size. We obtained good results without
having to manually adjust parameters for every data set.

There are several considerations when choosing the
block size. Smaller blocks yield better spatial resolution
in the estimated field map and reduce intrablock averag-
ing of rapidly varying off-resonance. Larger blocks pro-
vide better frequency resolution for locating the spectral
peak, and usually contain more image features to corre-
late. We generally suggest block sizes where FOVb is two
tot three times larger than the smallest resolvable struc-
tures, and FOVp is at least 5 � FOVb. The block size also
bounds the frequency estimates. With mapdrift, the max-
imum measurable constant coefficient is 6FOVp/4dTread,
which corresponded to around 6400 Hz in our experi-
ments and was large enough to accommodate the off-res-
onance typically observed in the heart (19). To correct
greater off-resonance, we suggest a multistage approach
in which larger blocks are used first followed by smaller
blocks to correct the residual off-resonance.

As shown in Eq. 7, the linear coefficient estimation
requires a nonzero echo time. The estimation accuracy
will improve as TE increases and the spectral peak loca-
tion becomes more dominated by TE. The TE bounds the
maximum measurable linear coefficient at 61/2dTE,

FIG. 7. Field map measurement inaccuracy and higher-order correction. a: No off-resonance correction. b: Image after correction with
frequency-segmented conjugate phase reconstruction using the measured field map (e). c: Image after correction with frequency-
segmented conjugate phase reconstruction using the estimated piecewise linear field map (f). Deblurring with the estimated field map

reveals more details (arrow). d: Image after correction with the proposed autofocus algorithm (piecewise linear correction using the esti-
mated piecewise linear field map, f). The higher-order off-resonance correction recovers finer-scale details. e: The measured field map.

f: The estimated piecewise linear field map. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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which corresponds to a shift of the spectral peak to the
edge of the acquired k-space support. In our experi-
ments, this bound was around 350 Hz/mm, which is
large enough to accommodate any realistic imaging sce-
nario. Usually, the trajectory will overlap itself before
the peak is shifted to the edge. Overlaps cannot be com-
pensated by any off-resonance correction method
because colocated k-space data cannot be separated.
Nonetheless, the spectral peak should still be detectable
and the trajectory shift can be at least partially corrected.

Auxiliary sources of linear image-domain phase—such
as the receiver coil—will shift the location of the spectral
peak and bias the linear coefficient estimation. We did not
observe bias problems in our experiments with the block
sizes we used. In general, small blocks could worsen the
bias because over a smaller region any spatially smooth
auxiliary phase will more likely have a significant linear
component. However, with sufficiently smooth phase or
small enough blocks, the phase within a block will become
an inconsequential constant offset. Furthermore, in our
two-step estimation strategy, errors in the estimated linear
coefficients can be offset by the constant coefficient.

In image regions with few features or low contrast,
there will be little information to correlate and the map-
drift approach will underestimate fc. Similar limitations
have been observed in other off-resonance correction
algorithms (6,11). In magnitude images, this is not prob-
lematic because the uncorrected blurring artifacts will
not be obvious. If residual off-resonance in these regions
is an issue for phase images, then the block size can be
increased to include nearby anatomical structure at the
expense of field map resolution.

The proposed autofocus algorithm is more computa-
tionally demanding than conventional autofocus meth-
ods. With our unoptimized Matlab implementation, the
average processing time for a 360 � 360 pixel image was
56 s on a single-core 2.9 GHz CPU. In contrast, the aver-
age times for conjugate phase reconstruction and conven-
tional autofocus were 0.8 and 10 s, respectively. The
estimation stage accounted for approximately 90% of the
run time of our algorithm, with the dominant operation
being the Fourier transform. Faster times are possible by
porting to a compiled language. The algorithm is natu-
rally parallelizable because each block and coil is proc-
essed independently, making further speed improve-
ments obtainable on multiprocessor systems.

The proposed algorithm could be extended in several
ways. Mapdrift accuracy can be improved by averaging
results from more than two directions. A higher-order
field map model may also be possible. The approach
suggested by Parot et al. (20) may be useful in perform-
ing piecewise quadratic deblurring. By processing the
entire image as one block, the proposed method becomes
a robust alternative to optimization-based automatic
global linear correction (8). Finally, although we have
discussed its use with 2D spiral trajectories, it extends
straightforwardly to radial and 3D trajectories so long as
the time map varies monotonically with k-space radius.

CONCLUSION

Piecewise linear autofocus, a physics-based automatic
off-resonance correction method, has been developed to

overcome limitations related to conventional approaches
that require optimization of a heuristic objective func-
tion. Local linear field map estimation and off-resonance
correction are performed on the blurry image. The piece-
wise linear framework provides robust field map estima-
tion and noise tolerance. Off-resonance correction of
fine-resolution spiral data indicates that the proposed
method can be more accurate than conventional autofo-
cus and comparable to field map-based methods.
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