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Chemical shift encoded techniques have received considerable

attention recently because they can reliably separate water
and fat in the presence of off-resonance. The insensitivity to off-

resonance requires that data be acquired at multiple echo times,
which increases the scan time as compared to a single echo ac-
quisition. The increased scan time often requires that a compro-

mise be made between the spatial resolution, the volume
coverage, and the tolerance to artifacts from subject motion.

This work describes a combined parallel imaging
and compressed sensing approach for accelerated water–fat
separation. In addition, the use of multiscale cubic B-splines for

B0 field map estimation is introduced. The water and fat images
and the B0 field map are estimated via an alternating minimiza-
tion. Coil sensitivity information is derived from a calculated k-

space convolution kernel and l1-regularization is imposed on the
coil-combined water and fat image estimates. Uniform water–fat

separation is demonstrated from retrospectively undersampled
data in the liver, brachial plexus, ankle, and knee as well as from
a prospectively undersampled acquisition of the knee at 8.6x

acceleration. Magn Reson Med 69:456–466, 2013. VC 2012
Wiley Periodicals, Inc.
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Chemical shift-based water–fat separation methods are
routinely used in the clinical MRI setting to separate
unwanted species from the signal of interest to provide a
clear visualization of pathology. These methods have
been used for ‘‘fat-only’’ imaging to detect fatty infiltra-
tion in the myocardium (1) and to measure adipose tis-
sue volume (2). Alternatively, these methods have been
used for ‘‘water-only’’ imaging to visualize cartilage
injury and meniscal tears in the knee (3) and to detect
disease in the spine (4). Fat saturation techniques, such
as chemical shift selective imaging (CHESS) (5), are a
commonly used chemical shift-based method. Although
versatile and widely applicable, fat saturation techniques
are sensitive to B0 inhomogeneity, which can result in
incomplete suppression in regions of off-resonance (6).
Chemical shift encoded techniques (7–10) have received
considerable attention because they can reliably separate

water and fat in the presence of off-resonance. These
techniques acquire data at multiple (typically 2–3) echo
times (TEs) and estimate the water and fat signals by cor-
recting for the phase errors caused by B0 inhomogeneity.
Multiple works have demonstrated robust water–fat sep-
aration in the presence of high off-resonance (11–18).

The insensitivity to off-resonance of chemical shift
encoded techniques requires that data be collected at
multiple TEs, which increases the scan time as com-
pared to a single echo acquisition. The increased scan
time often requires that a compromise be made between
the spatial resolution, the volume coverage, and the tol-
erance to motion artifacts. To address this compromise,
scan time reduction techniques have been used. Both
Hines et al. (19) and Yu et al. (20) have reported using
parallel imaging (21,22) to shorten the scan time.
Reeder et al. have developed a homodyne reconstruc-
tion technique for partial k-space acquisitions (23),
whereas Brodsky et al. (24) and Bornert et al. (25) have
proposed reconstruction methods for non-Cartesian
acquisitions. Recent works from Doneva et al. (26) and
Sharma et al. (27) have applied compressed sensing (28)
by estimating the B0 field map and the water and fat
images directly from the undersampled k-space
measurements.

In this work, we introduce a combined parallel imag-
ing and compressed sensing approach for water–fat sepa-
ration. The combination of these two techniques exploits
complementary pieces of information; specifically, paral-
lel imaging uses the distinct spatial sensitivities of the
multiple receiver elements while compressed sensing
makes use of the presumed compressibility of the
desired images. We also introduce the use of multiscale
cubic B-splines for estimating the B0 field map. The
water and fat images and the B0 field map are estimated
in an alternating manner directly from the undersampled
k-space measurements. In the following section, we pres-
ent the signal model and details of the reconstruction.
Results using the proposed approach are then shown on
liver, brachial plexus, ankle, and knee datasets, and
these results are compared to those from an existing par-
allel imaging and water–fat separation technique.
Finally, we discuss the benefits and limitations of the
present work.

METHODS

Signal Model

We model, in Eq. 1, the undersampled k-space measure-
ments from all receiver coils at all TEs, ku, as a function
of the unknown un-normalized coil sensitivities (~C),
unknown water and fat spin density images (~q),
unknown B0 field map (represented in W), known water–
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fat chemical shift modeling matrix (A), and known
k-space sampling (Fu), in the presence of additive Gaus-
sian noise with zero mean and unknown covariance
matrix R.

ku ¼ Fu
~CWA~qþNð0;RÞ ½1�

The vector ~q is a concatenation of the water spin den-
sity and the fat spin density images (i.e.,
~q ¼ ½~r1w ; ~r1f ; :::~rPw ; ~rPf �), where the subscript denotes the spe-
cies and the superscript denotes the pixel index. The
matrix A operates pixel-wise and we assume a six-peak
fat spectrum with known relative amplitudes and fre-
quency shifts (29). The block diagonal matrix W contains
exp(j2pwptn) on the pth diagonal of the nth block, where
wp is the field map value (in Hertz) at the pth pixel and
tn is the time (in seconds) of the nth echo.

In practice, the coil sensitivity maps are normalized
such that the l2-norm taken across the coil dimension is
equal to one for all pixels. This is reflected by a slight
modification of the signal model (Eq. 2), where C repre-
sents the normalized coil sensitivities and q denotes the
coil-combined water and fat images, which are the water
and fat spin density images multiplied by the square
root sum of squares of the coil sensitivities.

ku ¼ FuCWAqþNð0;RÞ ½2�

Equation 2 presents the signal model that relates the
unknowns (C, W, q) to the measurements (ku). Note that
the product CWAq represents the echo time images from
all coils. The undersampled Fourier transform, Fu, is
applied to each image to yield the k-space measurements.

Sampling Considerations

The sampling of k-space should satisfy requirements for
both parallel imaging and compressed sensing. From a k-
space-based parallel imaging perspective, the sampling
should avoid large regions of nonsampled points. This
ensures that the k-space kernel can use acquired k-space
points to synthesize the neighboring nonacquired points.
The theory underlying compressed sensing suggests that
the measurement vectors exhibit incoherence, where the
coherence of a measurement matrix M is defined as the
maximum off-diagonal absolute value of the matrix
MH�M (30). The measurement matrix in this work is
FuCWAW21, where W represents the sparsifying trans-
form. Because C will vary between scans and W will vary
both between scan and within one reconstruction, a gen-
erally applicable analysis of incoherence, and thus of the
optimal k-space sampling, is infeasible.

For practicality, we adopt Poisson disk sampling for
the joint parallel imaging and compressed sensing frame-
work. This sampling scheme has been proposed by Lus-
tig et al. (31) and has been used by Doneva et al. (26) in
the context of compressed sensing and water–fat separa-
tion. Poisson disk sampling was suggested by Cook in
1986 in the computer graphics community as a way to
avoid the structured aliasing artifacts that occur when
sampling at a regular interval under the Nyquist limit
(32). The artifacts that result from Poisson disk sampling

appear much less visually objectionable than structured
aliasing.

Figure 1 shows two grids that each are of size 192 �
160 pixels, one that is uniformly undersampled and the
other that is sampled with a Poisson disk scheme, along
with their corresponding point-spread function (PSF).
The central 24 � 24 region is fully sampled as it will be
used for kernel calibration (discussed later). The net
acceleration of each sampling pattern is 7.7x. Similar to
the uniform undersampling, the Poisson disk sampling
does not contain large regions of nonsampled points. In
contrast, the PSF of the Poisson disk pattern suggests
that aliasing artifacts in the current context may appear
incoherent.

Signal Reconstruction

The water and fat images and the B0 field map are esti-
mated from the undersampled k-space measurements
using parallel imaging, compressed sensing, and multi-
scale cubic B-splines. First, coil sensitivity maps are
derived from the SPIRiT (31) k-space convolution kernel.
Next, the coil-combined water and fat images and the B0

field map are estimated in an alternating manner. The
water and fat images are estimated with an l1-regulariza-
tion on their respective transform coefficients and the B0

field map is estimated using multiscale cubic B-splines.
The following subsections describe in detail the three
components of the reconstruction. The components are

FIG. 1. Uniformly undersampled (US) and Poisson disk (PD) k-
space sampling pattern and their corresponding magnitude point-
spread function (PSF). Both schemes sample the central 24 � 24

region for kernel calibration and result in 7.7x acceleration. Addi-
tionally, both schemes avoid large gaps of nonsampled points in

k-space, which is desirable for parallel imaging. In contrast, the
PSF of the Poisson disk pattern suggests that aliasing artifacts
may appear incoherent, which is beneficial when using com-

pressed sensing.
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then brought together in an algorithm that summarizes
the steps of the reconstruction.

Parallel Imaging

Traditionally, a distinction in parallel imaging has been
made between image-domain methods such as SENSE
(21) and k-space methods such as GRAPPA (22). Recently,
Lai et al. (33) and Lustig et al. (34) have addressed the
superficiality of this distinction. Specifically, they have
shown that the coil sensitivity maps that are used in
image-domain methods can be derived from the convolu-
tion kernels that are used in k-space methods. Thus, any
‘‘k-space’’ parallel imaging method can be equivalently
implemented as an ‘‘image-domain’’ method.

In this work, we use coil sensitivity maps that have
been derived from the SPIRiT (31) k-space kernel. An ex-
planation of this derivation is presented in Appendix A.
Figure 2 shows the coil images and derived coil sensitiv-
ities for a liver dataset that will be presented later. Once
the coil sensitivity maps have been derived, they remain
fixed throughout the remainder of the reconstruction. An
advantage of using the derived coil sensitivities is that
the calibration consistency constraint is implicitly
imposed whereas imposing this constraint in k-space
would require an explicit calibration consistency expres-
sion in the reconstruction (see Eq. 10 in Ref. 31). Lai
et al. (33) have shown the benefit of using the derived
coil sensitivities because the absence of the explicit cali-
bration consistency expression reduces the computa-
tional complexity of the iterative reconstruction.

Compressed Sensing

The undersampled k-space measurements are modeled
as a linear function of the coil-combined water and fat
images. The linear map (FuCWA) is, in general, unknown

because the coil sensitivity maps (C) and B0 field map-
dependent term (W) are unknown. However, given an
estimate of C and W, the linear mapping becomes known
and the water and fat images can be estimated using
compressed sensing (28) by exploiting their presumed
compressibility in a predetermined linear transform.

FIG. 2. The top row in each set
of images shows the fully

sampled coil images and the
bottom row shows the corre-

sponding coil sensitivities (mag-
nitude) that were derived from
the SPIRiT k-space kernel using

only the central 16 phase
encode lines. Using the coil sen-

sitivities implicitly imposes the
SPIRiT constraint, which avoids
the need for an explicit calibra-

tion consistency expression in
the reconstruction.

FIG. 3. Single cubic B-spline functions from coarser scale (top) to

finer scale (bottom) and their corresponding cubic B-spline sets.
The B-spline set is created by spatially shifting the single cubic B-

spline in both spatial directions by multiples of the knot spacing.
The cubic B-splines are nonnegative everywhere and the set
sums to one at all spatial positions. The field map update term at

the mth scale is restricted to be in the space that is spanned by
the mth cubic B-spline set.
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Specifically, given C and W, we estimate the water and
fat images via Eq. 3, where W represents the Daubechies-
4 wavelet transform that operates separately on the water
and fat images. We impose sparsity constraints on the
coil-combined water and fat images rather than on the
individual coil images because the latter potentially have
less sparsity due to coil sensitivity-dependent magnitude
and phase variations.

min
q

ku � FuCWAqk k22þl Wqj j1 ½3�

We assume that the noise is independently and identi-
cally distributed (i.e., R 5 r2I). The parameter k balances
data fidelity with transform sparsity and was chosen
empirically based on subjective assessment of recon-
structed image quality. The expression in Eq. 3 is a con-
vex optimization problem that is solved using conjugate
gradients.

Multiscale Cubic B-splines

An accurate B0 field map is a vital prerequisite for uni-
form water–fat separation, however estimating this
parameter is challenging due to the nonconvexity of the
least-squares cost as a function of the field map value.
To guide the reconstruction, the assumption of a
smoothly varying B0 field map is often made (12,15).

In this work, we propose to use multiscale cubic
B-splines for B0 field map estimation. Skare et al. have
found that cubic B-splines provided a concise and accu-
rate representation of the B0 field inhomogeneity that
arose from metallic implants (35). We extend their find-
ing by incorporating a multiscale element (15) to avoid
converging to local minima B0 field map estimates. We
first estimate a global value by restricting the B0 field
map estimate to one common value for all pixels. We
then refine the field map estimate using the multiscale
cubic B-splines. Figure 3 shows 2-D cubic B-spline func-
tions and the corresponding B-spline set, from coarser to
finer scale. The support size of the cubic B-spline
changes by a factor of three-fourths in each dimension
between successive scales. For example, the coarsest
scale B-spline in Fig. 3 has a support size of 256 � 256
pixels while the support size at one finer level is 192 �
192 pixels. The B-splines are nonnegative everywhere
and the sum of the functions at any spatial position is
one. Details on the creation of the cubic B-spline func-
tions and sets are presented in Appendix B.

The B0 field map estimate is updated gradually using
cubic B-splines of successively finer scales. The update

expression at the mth scale is shown in Eq. 4. A full der-
ivation appears in Appendix C.

min
Dc;Dr

r� xðDw;DqÞk k22þl WDqj j1 s:t: Dw 2 span Bmf g ½4�

In Eq. 4, Dc is the field map update term, Dr is the error of
the current water–fat image estimates, r is the residual error
between the k-space measurements and the current estimate
of acquired k-space, x is a linear function that relates the
unknown error terms (Dw, Dq) to the residual, and Bm repre-
sents the cubic B-spline set at the mth scale. Upon estimat-
ing Dw, it is added to the current field map estimate. The
water–fat error term, Dq, is discarded after estimation. The
expression in Eq. 4 is a convex function of both Dw and Dq
that is also solved using conjugate gradients.

Iterative Decomposition

The reconstruction steps are summarized in the follow-
ing algorithm.

1. Derive coil sensitivities from SPIRiT k-space kernel
(this will fix C)

2. Estimate global B0 field map value, then select the
coarsest-level cubic B-spline set (m ¼ 1)

3. Estimate the water and fat images with fixed C and
current W (Eq. 3).

4. Estimate the B0 field map update term (Dw) using
cubic B-splines at the current (i.e., mth ) scale (Eq. 4),
then add the update term to the current B0 field map
estimate (this will update W)

5. IF max of |Dw| < e (e.g., 1 Hz)
Go to Step 6

ELSE
Go to Step 3

6. IF current scale is equal to the predefined finest-scale
Done

ELSE
Update cubic B-spline set to be one finer scale (m ¼
m þ 1)
Go to Step 3

Upon convergence, the water and fat estimates (q̂) and
the B0 field map estimate (ŵ) are a local minimizer of the
following cost function

min
r;c

ku � FuCWAqk k22þl Wqj j1 s:t: w 2 span Bmaxf g ½5�

where Bmax is the set of finest-scale cubic B-splines. Note
that this implies that all intermediate B0 field map

Table 1
Acquisition Parameters

Anatomy Coil Matrix Size

FOV

(cm) Dz (mm)

TE1

(ms)

DTE
(ms)

Scan Time

(mm:ss)

Liver Eight-channel torso 256 � 256 � 8 34 5 2.184 0.794 00:38

Brachial Plexus Eight-channel neurovascular 192 � 192 � 64 38 2.4 2.184 0.796 04:24
Ankle Eight-channel torso 192 � 192 � 64 24 2 2.184 0.796 04:04
Knee Eight-channel knee 192 � 192 � 160 18 1 2.184 0.796 12:22

FOV stands for field of view, Dz represents the slice thickness, and DTE represents the echo time spacing. The scan time represents

the time to acquire the fully sampled dataset. The prospectively undersampled knee dataset was also collected with the shown parame-
ters at 8.6x acceleration, which reduced the scan time to 01:25.
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estimates are in the space spanned by Bmax, which in turn
implies that span{Bm} ( span { Bmax} for allm � max.

In Vivo Experiments

Experiments were conducted with volunteer consent on
a GE Signa EXCITE HDx 3-T system (GE Healthcare,
Waukesha, WI) using an investigational GE IDEAL 3-D
spoiled-gradient-echo sequence. Fully sampled measure-
ments were collected at three TEs using unipolar read-
outs with one TE per TR and sampling bandwidth ¼
6125 kHz. Data were collected from the liver, brachial
plexus, ankle, and knee. Table 1 lists the acquisition
parameters for each of the datasets. In addition, a pro-
spectively undersampled knee dataset was collected
using a custom-built in-house sequence at 8.6x accelera-
tion factor using the same prescription as the fully
sampled knee dataset. This scan was done immediately
after the fully sampled knee scan.

To test the proposed approach, we retrospectively
undersampled the datasets using a Poisson disk sampling

pattern. Table 2 lists the size of the calibration region and
the net acceleration factor that were used for each of the
datasets. The coil sensitivity maps were derived from a 7
� 7 SPIRiT k-space kernel. The coarsest-scale cubic B-
spline had a 1-D support size equal to the size of the cor-
responding image dimension (i.e., for an M � N image,
the coarsest-scale B-spline was of size M � N). The sup-
port size of the B-spline functions was scaled by a factor
of three-fourths in each dimension between successive
scales. For example, the next coarsest-scale B-spline
would be of size 3M/4 � 3N/4, followed by 9M/16 � 9N/
16, and so on. The finest-scale cubic B-spline (CBS) had a
1-D support size equal to 16. The proposed approach will
hereafter be referred to as PI-CS-CBS. The prospectively
undersampled dataset was reconstructed in the same
manner as the fully sampled dataset. The reconstruction
time using the proposed approach depended on the ma-
trix size of each slice and was typically between 15 and
30 min (24 CPUs, 2.93-GHz, 48-GB RAM).

To compare our approach, we implemented an existing
parallel imaging and water–fat separation approach. The
fully sampled data were uniformly undersampled using
the parameters listed in Table 2. The retrospectively
undersampled k-space data were then reconstructed using
Autocalibrated Reconstruction for Cartesian Sampling
(ARC) (36) with a 7 � 7 ARC k-space kernel. Subsequently,
the data were coil combined (37) and then water–fat sepa-
ration was done using IDEAL with region-growing
(IDEAL-RG) (10,12). This reconstruction will hereafter be
referred to as ARC/IDEAL-RG. We used the ARC imple-
mentation found in the SPIRiT software package (31). To
serve as a reference, the fully sampled data were first coil
combined and then passed to the IDEAL-RG reconstruc-
tion. This reconstruction will hereafter be referred to as
IDEAL-RG. We also reconstructed the fully sampled
brachial plexus dataset using voxel-independent IDEAL
(IDEAL-VI) (38). Note that for the brachial plexus dataset,
the proposed multiscale cubic B-spline approach was

FIG. 4. B0 field map, water, and
fat estimates of the liver using an
eight-channel torso coil. The

ARC/IDEAL-RG estimates exhibit
unresolved aliasing artifacts

(arrows) and noise amplification
(arrowhead). These artifacts were
anticipated because the outer

acceleration factor of 4 is greater
than the number of coils along

the axis of undersampling. In
contrast, the estimates using the
proposed method exhibit only

slight incoherent artifacts as a
result of the Poisson disk sam-
pling and l1-regularization.

Table 2
Undersampling Parameters

Anatomy

Calibration

Region
(ky � kz)

Outer

Reduction
(ky � kz)

Net
Acceleration

Liver 16 � N/A 4 � N/A 3.4x
Brachial Plexus 24 � 24 3 � 3 6.4x
Ankle 24 � 24 3 � 3 6.4x

Knee 24 � 24 3 � 3 7.7x/8.6x*

This table shows the size of the fully sampled calibration region,
the outer reduction factor, and the net acceleration that was used

to retrospectively downsample each of the datasets. The outer
reduction factor is only applicable to uniform undersampling. (*)
The PI-CS-CBS estimates of the knee were reconstructed from

datasets that had been downsampled (retrospective and prospec-
tive) by a factor of 8.6x.
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used in place of IDEAL-RG, because the latter technique
was not able to overcome the significant off-resonance
encountered in this anatomy.

RESULTS

Figure 4 shows the B0 field map and the water and fat
image estimates of the liver using 1x IDEAL-RG, 3.4x
ARC/IDEAL-RG, and 3.4x PI-CS-CBS. The arrows in the
ARC/IDEAL-RG estimates point to aliasing artifacts and
the arrowheads highlight regions of noise amplification.

Figure 5 shows the B0 field map and the water and fat
image estimates of the brachial plexus using 1x IDEAL-
VI, 1x CBS, 6.4x ARC/CBS, and 6.4x PI-CS-CBS. The
white ellipses in the IDEAL-VI B0 field map outline areas
of incorrect estimates that cause water–fat swaps. The
white arrowheads point to regions of noise amplification
in the ARC/CBS estimates.

Figure 6 shows the B0 field map and the water and fat
image estimates of the ankle using 1x IDEAL-RG, 6.4x ARC/
IDEAL-RG, and 6.4x PI-CS-CBS. The arrowheads highlight
noise amplification in the ARC/IDEAL-RG estimates.

FIG. 5. B0 field map, water, and fat estimates of the brachial plexus using an eight-channel neurovascular coil. Field map estimate errors
using IDEAL-VI (white ellipses) cause water–fat swaps. The CBS field map estimation approach correctly estimates the field map to avoid

the swaps. The ARC/CBS estimates exhibit noise artifacts (arrowheads), especially in the brain. These artifacts were expected because the
3x by 3x outer acceleration factor is greater than the number of receiver elements. The estimates using the proposed PI-CS-CBS approach
exhibit a relatively reduced level of artifacts. Slight loss of subtle features is seen in the PI-CS-CBS estimate (black arrow).
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Figure 7 shows the B0 field map and the water and fat
image estimates of the knee using 1x IDEAL-RG, 7.7x
ARC/IDEAL-RG (retrospective), 8.6x PI-CS-CBS (retro-
spective), and 8.6x PI-CS-CBS (prospective). The same
Poisson disk pattern was used for the retrospective and
prospective undersampling. The arrows and arrowheads
in the ARC/IDEAL-RG estimates highlight, respectively,
artifacts and areas of noise amplification. Both the retro-
spective and prospective results using the proposed
method are presented to show that system issues, such as
eddy currents, associated with the k-space sampling order
do not affect the quality of the water–fat separation.

DISCUSSION

The proposed PI-CS-CBS approach yielded water, fat,
and field map estimates of better quality than ARC/
IDEAL-RG. The ARC/IDEAL-RG estimates exhibited
severe artifacts, which were anticipated, because the
outer acceleration factor was greater than the number of
coils along the dimension(s) of undersampling in all
cases. In the proposed approach, the Poisson disk sam-
pling caused incoherent aliasing artifacts that were
reduced by the l1-regularization in the reconstruction.
Any remaining artifacts appeared much more benign
than the structured artifacts in the ARC/IDEAL-RG esti-
mates. The smaller number of slice encodes in the brach-
ial plexus and ankle datasets versus the knee dataset
limited the degree of wavelet compressibility along that
dimension, and may have contributed to the slight loss
of subtle features in the brachial plexus and ankle esti-
mates as compared to the knee estimates.

The joint parallel imaging and compressed sensing
approach imposed two complementary constraints on
the reconstruction; one was based on the distinct spatial
sensitivities of the receiver elements, the other on the
presumed compressibility of the underlying images. By

using coil sensitivities that were derived from the SPIRiT
k-space kernel, we were able to impose the SPIRiT con-
straint without requiring an explicit calibration consis-
tency expression in the reconstruction. The use of coil
sensitivities allowed for the reconstruction of coil-com-
bined images, which reduced the computational com-
plexity as compared to reconstructing one set of images
(i.e., water, fat, B0 field map) for each coil. In addition,
reconstructing the coil-combined images freed the sparsi-
fying transform from the responsibility of capturing the
magnitude and phase variations of the coil sensitivities.

The multiscale cubic B-splines provided an accurate
and compact representation of the B0 field map. As an
example of compactness, only 4489 (¼ 672) cubic B-
splines were used at the finest scale to represent the B0

field map of 65,536 (¼ 256 � 256) pixels in the liver
dataset. This equates to a 14.6x oversampling factor,
which allowed the B0 field map to be accurately recov-
ered from an undersampled k-space acquisition. The
multiscale element gradually guided the estimate of the
B0 field map. The benefit of this approach was most
apparent in the brachial plexus dataset in which the
IDEAL-VI B0 field map estimate had numerous errors
that caused water–fat swaps. The estimates, from both
fully sampled and undersampled data, using the cubic
B-splines did not exhibit these swaps. A tradeoff when
using the cubic B-splines is a smoothing of the B0 field
map estimate. We have calculated that the full-width
half-maximum of the point-spread function for field map
estimation is approximately eight pixels in one dimen-
sion. Empirically, this degree of smoothing does not
seem to affect the quality of the water–fat separation.

The current framework has some limitations. First, the
topic of quantitation has not been addressed. Accurate
water–fat quantitation (19,39) requires compensation for
confounding factors, the most prominent of which is R2*
(¼1/T2* ). Fortunately, the signal model that we have

FIG. 6. B0 field map, water, and fat estimates of the ankle using an eight-channel torso coil. The arrowheads in the ARC/IDEAL-RG esti-

mates indicate regions of noise amplification. The outer acceleration factor (3x by 3x) was greater than the number of receiver channels
so these artifacts were expected. The estimates using the proposed PI-CS-CBS approach exhibit incoherent artifacts that appear more

benign than the artifacts in the ARC/IDEAL-RG estimates.
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proposed in Eq. 1 is easily amended to account for the
R2* parameter. We are currently investigating the neces-
sary modifications to the reconstruction routine to
account for this confounding factor. In addition, the
effect on water–fat quantitation caused by small errors in
the B0 field map estimate using cubic B-splines must be
explored. It may be that an error of only a few Hertz
causes significant errors in quantitation. Second, we
ignored the phase accrual during the readout due to
chemical shift off-resonance (24) because its effects were
minimal for the Cartesian trajectory and high sampling
bandwidth that we used. If a non-Cartesian trajectory
was used, one would have to account for the distinct
time that each k-space point was sampled. Next, the reg-
ularization parameter l was chosen empirically. This is
acceptable for showing feasibility of the proposed
method but an automated procedure would be required
for wide acceptance. In addition, the reconstruction time
would need to be shortened to permit online reconstruc-
tion. Lastly, the pulse sequence that we used for
prospective undersampling was limited to sampling the
same phase encode line for all TEs. This limitation

restricted the sampling incoherence to the ky–kz plane
rather than the ky–kz-TE volume. Blipping the phase
encode between consecutive echoes would increase sam-
pling incoherence, which may slightly improve results.

CONCLUSION

We have demonstrated the feasibility of integrating paral-
lel imaging and compressed sensing for accelerated
water–fat separation. In addition, we have introduced the
use of multiscale cubic B-splines, which provided a com-
pact representation and accurate estimation of the B0 field
map. The proposed approach was compared to an existing
parallel imaging and water–fat separation method, and
was found to yield image estimates of better quality. In all
cases, the outer acceleration factor was greater than the
number of coils along the dimension(s) of undersampling.
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APPENDIX A

Deriving coil sensitivity maps from the SPIRiT convolu-
tion kernel

The calibration consistency expression proposed by
Lustig et al. (31) is:

ki ¼
XNc

j¼1

gij � kj; 8i ½A1�

where ki represents the full k-space measured by the ith
coil, gij is the convolution kernel, Nc is the number of
coils, and � denotes the circular convolution operation.
In words, this expression enforces the constraint that
each k-space point is a weighted sum of its k-space
neighbors from all coils. The weights, found in gij, are
calculated using a fully sampled calibration region.

Taking the inverse Fourier transform of Eq. A1 yields:

Ii ¼
XNc

j¼1

Gij: � Ij; 8i ½A2�

where Ii is the ith coil image, Gij is the inverse Fourier
transform of gij, and .* denotes pixel-wise multiplication.
Equation A2 can be written in terms of each voxel rather
than for each coil image, as seen in Eq. A3.

I1ðx; yÞ
I2ðx; yÞ

:

:

INc
ðx; yÞ

2
6666664

3
7777775
¼

G11ðx; yÞ G12ðx; yÞ : : G1Nc
ðx; yÞ

G21ðx; yÞ G22ðx; yÞ : : G2Nc
ðx; yÞ

: : : : :

: : : : :

GNc1ðx; yÞ GNc2ðx; yÞ : : GNcNc
ðx; yÞ

2
6666664

3
7777775

�

I1ðx; yÞ
I2ðx; yÞ

:

:

INc
ðx; yÞ

2
6666664

3
7777775

8x; y ðA3Þ

Notice that Eq. A3 is still a representation of the cali-
bration consistency expression, but in a different form
than Eq. A1. At this point, there is no significant differ-
ence between the two forms other than one involves a
circular convolution while the other uses pixel-wise
multiplication.

Let us now focus on one particular pixel and drop the
pixel indices in Eq. A3 for brevity’s sake, which allows
us to concisely write Eq. A3 as:

v ¼ Hv ½A4�

According to Eq. A4, the calibration consistency
expression says that v should be in the space that is
spanned by the eigenvectors of H that have associated
eigenvalue equal to one. With no FOV overlap, Lai et al.
(33) have shown that H will have one eigenvalue that is
equal to one. In this case, v is a scaled version of e1,

which is the eigenvector with eigenvalue equal to one
and where the scalar a [ C1, as seen in Eq. A5.

v ¼ a � e1 ½A5�

The following equation can also be written for v (still
omitting subscripts):

v ¼

I1
I2
:
:
INc

2
66664

3
77775 ¼ m �

C1

C2

:
:

CNc

2
66664

3
77775 ½A6�

where m is the magnetization and Ci denotes coil sensi-
tivity value of the ith coil. Equating the terms in Eqs. A5
and A6, we see that e1 contains the coil sensitivities.

APPENDIX B

Cubic B-Splines

A 1-D cubic B-spline is defined as:

bðtÞ ¼
2
3 � ð1� tj j

2 Þt2 0 � tj j � 1
ð2� tj jÞ3

6 1 < tj j � 2
0 else

8><
>: ½B1�

This function is nonzero only on the interval (�2, 2).
To create the base 1-D cubic B-spline, b(t) is uniformly
sampled on the interval (�2, 2) such that the number of
sampled points equals the desired support size s (e.g.,
128 pixels). A knot spacing, ht, is defined as:

ht ¼ round
s� 1

4

� �
½B2�

To create a base 2-D cubic B-spline of size M � N, two
cubic B-splines, one with length M and the other with
length N, and their associated knot spacing are first cal-
culated. The base 2-D cubic B-spline is then created via
an outer product of the two 1-D cubic B-spline functions.
The 2-D cubic B-spline set is created by spatially shifting
the base 2-D cubic B-spline by all combinations of the
multiples (both positive and negative) of the knot
spacing in both dimensions. For a I � J (e.g., 256 � 192
pixels) field map, the base 2-D cubic B-spline is shifted
in both dimensions until it is entirely zero in the I � J
image. Shifting by the knot spacing ensures that the sum
of the B-spline set at any spatial position is equal to one.
The creation of a base cubic B-spline and associated set
in higher dimensions can be done using a straightfor-
ward extension of the 2-D example presented here.

APPENDIX C

B0 Field Map Update

To derive the expression for the B0 field map update
(Dw), we begin by rewriting the signal model (also found
in Eq. 2)

ku ¼ FuCWAqþNð0;RÞ ½C1�
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The unknown terms at this stage are the B0 field map-
dependent term (W) and the water and fat images (q).
However, we have current estimates for both of the
terms, which we use to rewrite Eq. C1 as:

ku ¼ FuCðŴ � DWÞAðq̂þ DqÞ þNð0;RÞ ½C2�

where, for example, q̂ denotes the current (known) water
and fat estimates and Dq represents the error (unknown)
in the estimate. The same convention is used for the
B0 field map-dependent term. Taking the first-order Tay-
lor approximation for the exponential terms in DW
results in

ku ¼ FuCðŴ � DTÞAðq̂þ DqÞ þNð0;RÞ ½C3�

where DT is a block diagonal matrix that contains 1 þ
j2p Dwptn on the pth diagonal of the nth block, where
Dwp is the field map update term at the pth pixel and tn
is the time of the nth echo.

At this point, Eq. C3 is modified by grouping the
known terms on the left-hand side, the unknown terms
on the right-hand side, and discarding the DS�Dq term
where �S is a block diagonal matrix that contains j2�
� ptn on the pth diagonal of the nth block.

ku � FuCŴAq̂ ¼ FuCŴDSAq̂þ FuCŴADrþNð0;RÞ ½C4�

Notice that the left-hand side of Eq. C4 is the residual
error between the measurements and the current esti-
mate while the right-hand side is a function of the errors
in the water, fat, and B0 field map estimates as well as
noise. Denoting the left-hand side of Eq. C4 as r, the
right-hand side as x(Dc, Dr), and assuming that the noise
is independently and identically distributed (i.e., S ¼
s2I), we arrive at the expression for the B0 field map
update in the mth cubic B-spline set.

min
Dc;Dr

r� xðDw;DrÞk k22þl WDqj j1 s:t: Dw 2 span Bmf g ½C5�

The Dq term does not need to be estimated but we
have found that doing so speeds the convergence of the
estimate of Dw. The Dq term is discarded after
estimation.
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