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Accelerated T2*-Compensated Fat Fraction
Quantification Using a Joint Parallel Imaging and
Compressed Sensing Framework

Samir D. Sharma, PhD,1,2* Houchun H. Hu, PhD,3 and Krishna S. Nayak, PhD2

Purpose: To develop a T2*-compensated parallel imaging
and compressed sensing framework for water-fat separa-
tion, and to demonstrate accelerated quantitative imaging
of proton density fat fraction.

Materials and Methods: The proposed method extends a
previously developed framework for water-fat separation
by additionally compensating for T2* decay. A two-stage
estimation was formulated that first determines an
approximation of the B0 field map and then jointly esti-
mates and refines the R2* (¼1/T2*) and B0 field maps,
respectively. The method was tested using a set of water-
fat phantoms as well as liver datasets that were acquired
from seven asymptomatic adult volunteers. The fat frac-
tion estimates were compared to those from a commonly
used nonaccelerated water-fat imaging method and also
to a sequential parallel imaging and water-fat imaging
method.

Results: The proposed method properly compensated for
T2* decay to yield accurate fat fraction estimates in the
water-fat phantoms. Further, linear regression analysis
from the liver datasets showed that the proposed method
accurately estimated fat fraction at acceleration factors
that were higher than those achievable by the sequential
parallel imaging and water-fat imaging method. Accurate
fat fraction estimates were demonstrated at acceleration
factors up to 4�, although some image artifacts were
observed.

Conclusion: The proposed T2*-compensated parallel
imaging and compressed sensing framework demon-
strates the potential to further accelerate water-fat imag-
ing while maintaining accurate estimates of proton den-
sity fat fraction.
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THE RENEWED INTEREST in water-fat imaging (1)
has led to the development of a quantitative imaging
biomarker known as the proton density fat fraction
(PDFF) (2). The importance of this biomarker is
underscored by two factors: 1) the increasing preva-
lence of nonalcoholic fatty liver disease (NAFLD),
which is now estimated to affect 20%–30% of people
in the United States; and 2) the inadequacies of
biopsy, which include risk, invasiveness, and the vari-
ability in sampling that can cause contradicting
diagnoses (3,4). The development of an magnetic
resonance imaging (MRI)-based method provides the
potential for a safe, noninvasive, and reliable alterna-
tive to biopsy for the diagnosis and grading of steatosis
(5). Recent studies have demonstrated the accuracy
and/or precision of chemical shift encoded methods
in estimating the PDFF (hereafter referred to as fat
fraction) (6–8).

The benefits of an MRI-based method for quantify-
ing liver fat fraction naturally come with the limita-
tions of MRI. Of particular relevance is the lengthy
scan time, which is further compounded in chemical
shift encoded MRI due to the need for measurements
at multiple echo times. This presents an especially
challenging problem for liver imaging in which the
patient must maintain a breath-hold during the scan
to avoid respiratory-related image artifacts. A compro-
mise is often made between spatial resolution, volume
coverage, and/or signal-to-noise ratio (SNR) to achieve
a manageable breath-hold time.

Acceleration techniques have been proposed with
the goal of reducing the degree of needed compromise
between imaging parameters. The most common tech-
nique uses parallel imaging to unalias the echo time
images followed by water-fat imaging to recover the
signals of interest (7,9). In this case, acceleration is
achieved by exploiting only the distinct spatial sensi-
tivities of the receiver elements. It is conceivable
that incorporating additional acceleration techniques,
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such as constrained reconstruction (10) and/or com-
pressed sensing (11), could lead to an even higher
acceleration while maintaining accurate estimates of
fat fraction.

The goal of this work was to develop and demon-
strate the feasibility of a joint parallel imaging and
compressed sensing technique for estimating liver fat
fraction. Whereas previous works (12–15) have used
parallel imaging and/or compressed sensing for quali-
tative water-fat imaging, the focus of this work is in
accurately quantifying fat fraction. We extend a previ-
ously developed framework for water-fat separation
(14) that employed parallel imaging and compressed
sensing to achieve acceleration in the liver, brachial
plexus, ankle, and knee. The current work extends
that framework by additionally compensating for the
effects of T2* decay to allow for accurate liver fat frac-
tion estimates. The proposed method was tested on a
set of water-fat phantoms and was then demonstrated
on seven asymptomatic adult volunteers. It is shown to
accurately estimate fat fraction at acceleration factors

that are higher than those achievable by the sequential
parallel imaging and water-fat imaging technique.

MATERIALS AND METHODS

Signal Model

We extend the formulation that was proposed in previ-
ous work (14) by including the effects of T2* on the
received signal. Doing so is especially critical when
estimating fat fraction in the liver due to the potential
presence of iron (16), which increases the rate of sig-
nal decay. Both Yu et al (17) and Bydder et al (18)
have shown that T2* compensation is necessary for
accurate fat fraction quantitation, particularly when
the patient exhibits hepatic iron overload.

The signal model, presented in Eq. [1], relates the
unknown signals of interest directly to the acquired
data:

ku ¼ FuCCRArþ Nð0;SÞ ½1�

Figure 1. The least squares
cost (top figure) for one repre-
sentative pixel from a fully
sampled six-echo liver dataset
is a nonconvex function of the
B0 field map and R2* para-
meters. At different values of
the B0 field map (denoted by
the dashed and solid lines in
the top figure), the cost func-
tion is minimized at different
values of R2* (solid dots in
the bottom figure). These
observations suggest that
standard convex minimization
algorithms may converge to
local minima (ie, nonoptimal)
solutions. To address this
issue, a two-stage estimation
scheme was proposed in
which an approximation of
the B0 field map is found
(setting R2* ¼ 0) followed by a
joint refinement and estima-
tion of the B0 field and R2*
maps, respectively.
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The undersampled k-space measurements from all
coils and at all echo times (ku) are modeled as a func-
tion of the known k-space sampling (Fu), unknown
normalized coil sensitivity maps (C), unknown B0 field
map (C) and R2* (¼1/T2*) map (both represented in
CR), known chemical shift encoding matrix (A), and

the unknown coil-combined water and fat images (r),
in the presence of additive Gaussian noise with zero
mean and covariance matrix S. The term CR is a
block diagonal matrix that contains exp(�j2pcptn)�
exp(�R2*p�tn) at the pth diagonal element of the nth

block, where p and n serve as indices over the pixels
and echo times, respectively.

Signal Estimation

Because the R2* term appears in the argument of
an exponential function, it is natural to consider
updating its estimate alongside the B0 field map
term (17). Under our simplifying assumption of
additive white Gaussian noise (ie, S ¼ s2I). Figure 1
shows the least squares cost as a function of B0
field map and R2* map values for one pixel from a
fully sampled six-echo liver dataset. This exemplary
cost surface is a nonconvex function of both the B0
field map and the R2* map parameters. Thus,
standard convex minimization may result in local
minima (ie, suboptimal) estimates. However, we
have observed that in the neighborhood of the true
B0 field map value, the cost is a convex function of
both parameters. This observation suggests that
estimation can be done in two stages: first, an
approximation of the B0 field map is found (setting
R2* ¼ 0) and second, the B0 field and R2* maps are
jointly refined and estimated, respectively. A similar
two-stage approach was proposed by Berglund and
Kullberg (19), although their motivation for doing so
was to reduce both computational complexity and
memory requirements.

As with the water and fat images and the B0 field
map, a regularization criterion should be imposed
on the estimate of the R2* map to compensate for
the nonacquired k-space samples. In general this
criterion does not prevent convergence to local min-
ima; however, the proposed two-stage estimation
permits the assumption of a cost function that is
convex with respect to the R2* map parameter.
Under this assumption, techniques such as l1-regu-
larization are applicable with an appropriate sparsi-
fying transform. In particular, we found that only
15%–25% of the Daubechies-4 (db4) wavelet trans-
form coefficients are needed to provide a sufficient
representation of the R2* map. Thus, an l1-penalty
on the db4 wavelet coefficients of the R2* map
should help to guide the reconstruction to the true
solution.

We compute the first-order Taylor series expansion
of the exponential function exp(-R2*p�tn) to update the
estimate of the R2* map. Using this approximation,

Figure 2. A flowchart depicting the estimation algorithm.
After estimating the coil sensitivity maps, the water and fat
images (r) and the B0 field (C) and R2* maps are alternately
estimated. The B0 field map is updated using cubic B-
splines of successively finer scale, where m represents the
scale and Bm is the corresponding B-spline set. The R2* map
is estimated only upon reaching the finest scale mmax. Con-
vergence is reached when both the B0 field and the R2* map
update terms (DC and DR2*, respectively) have a maximum
absolute value of less than 1 Hz.

Table 1

Data Acquisition Parameters

Object Coil Matrix size FOV (cm) Dz (mm) Flip angle (deg) TE1 (ms) DTE (ms) Scan time (mm:ss)

Phantom Eight-channel head 256�256�8 20 4.1 5 1.57 0.9 01:01

Liver Eight-channel torso 160�160�8 32-44 5 5 1.08 0.668-0.754 00:18-00:20

The fully-sampled k-space data were acquired at six echo times using the parameters that are listed in this table. The Dz term denotes

slice thickness and DTE is the echo spacing.
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the R2* map (and the B0 field map) update terms are
calculated using the following expression:

min
Dc;DR2�

r� x Dc;DR2�ð Þk k22þl W � DR2�j j1

s:t: Dc 2 spanfBmaxg
½2�

In Eq. [2], r is a vector whose elements contain the
difference between the measured k-space and the cur-
rent estimate of k-space, x is the linear function that
relates the B0 field map update term (DC) and the
R2* map update term (DR2*) to r, l is the user-defined
regularization parameter, W represents the db4 wave-
let transform, and Bmax is the finest-scale cubic B-
spline set. The use of cubic B-splines has been shown
to compactly represent the B0 field map estimate
while avoiding local minima that would cause a
water-fat swap (14).

By estimating the R2* map in this manner, the
remaining parameters of interest may be estimated by
the method that was proposed in previous work (14).
In particular, the coil sensitivity maps are derived
from the SPIRiT (20) k-space kernel and the water
and fat images are estimated by minimizing a cost
function that balances data fidelity with an l1-penalty
on the db4 wavelet coefficients of the images, as seen

in Eq. [3], where the ‘‘hat’’ denotes current estimates.
For simplicity, we use the same value of l in Eqs. [2]
and [3], while acknowledging the potential for further
optimization:

min
r

ku � FuĈĈRAr

�
�
�

�
�
�

2

2
þl Wr

�
�

�
�
1

½3�

The estimation algorithm is summarized in Fig. 2.

Experiments

Acquisition and Reconstruction

Data were acquired on a GE Signa EXCITE HDxt 3T
(v. 16) system (GE Healthcare, Waukesha, WI). Fully
sampled k-space measurements were acquired at six
different echo times using an investigational version
of the GE IDEAL-IQ sequence (GE Healthcare). The
acquisition parameters are listed in Table 1.

Images were reconstructed using up to three differ-
ent methods (described later). For all methods other
than the proposed one, a phase preserving algorithm
(21) was implemented on an echo-by-echo basis to
combine the individual coil images at each echo
time. This coil combination step was done immedi-
ately prior to the water-fat reconstruction. Note that

Figure 3. a: Photograph of
three water-fat phantoms that
were constructed using differ-
ent concentrations of distilled
water and Intralipid. One
milligram of manganese chlo-
ride was dissolved in each
phantom to create a T2*
shortening effect. The
expected fat fraction value is
shown for each phantom. The
remaining phantoms in the
photograph were not a part of
this experiment. b: The esti-
mated fat fractions using
IDEAL without T2* compensa-
tion. An overestimation of
between 4%–5% is seen when
T2* is not accounted for. c:
The estimated fat fractions
using IDEAL with T2* com-
pensation (T2*-IDEAL). The
estimated values agree closely
with the expected values. d:
The estimated fat fractions
using the proposed method at
3.4� acceleration. Accurate
estimates are maintained at
this acceleration factor. In
addition, a similar image qual-
ity is observed between the
proposed method and T2*-
IDEAL.
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coil combination was not performed when using the
proposed method since the signals of interest are
estimated directly from the undersampled k-space
measurements. In all reconstructions, we assumed a
six-peak fat spectrum (9) with known relative ampli-
tudes and frequency shifts. The fat fraction image
was calculated from the water and fat estimates
using the magnitude discrimination method (22).
Lastly, the value of the regularization parameter was
selected based on subjective assessment of image
quality. A value of 4.5 was used for all of the recon-
structions presented in this article. Image recon-
struction was performed in MatLab R2011a (Math-

Works, Natick, MA), which was installed on a
personal computer (8 GB RAM, 2.8 GHz dual-core
processor).

Phantom

Three water-fat phantoms were constructed, each
containing a different concentration of distilled water
and 20% Intralipid (Baxter Healthcare, Deerfield, IL).
The first phantom contained only distilled water, the
second contained equal parts by mass of distilled
water and 20% Intralipid, and the third contained
only 20% Intralipid. One milligram of manganese
chloride (J.T. Baker, Center Valley, PA) was dissolved
in each phantom to create a T2* shortening effect.
The phantoms were placed in a circular glass con-
tainer together with other phantoms that were not a
part of this experiment. The container was filled with
tap water to reduce susceptibility.

The center slice was reconstructed using an in-
house implementation of the IDEAL algorithm (23)
without and with T2* compensation (17) to determine
the effects on the fat fraction estimate. To demon-
strate the feasibility of the proposed method, the fully
sampled k-space data were retrospectively under-
sampled using a variable-density Poisson disk sam-
pling pattern. The central 16 phase encoding lines
were retained to estimate the 7 � 7 SPIRiT kernel,
yielding a net acceleration factor of 3.4�. The retro-
spectively undersampled data were then recon-
structed using the proposed method.

Liver

Based on previous MRI scans, an effort was made to
choose a subject cohort that represented a spectrum
of liver fat fractions. The presence of iron in the liver
was not an inclusion/exclusion criterion in this study.
Each subject was instructed to maintain a breath-
hold during the 18–20-second scan.

The center two slices from each subject were recon-
structed using the following three methods. First, the
fully sampled dataset was reconstructed using an in-
house implementation of T2*-IDEAL (17). The esti-
mates from this reconstruction served as the referen-
ces. Second, the fully sampled data were uniformly
undersampled at net acceleration rates of 2.5�, 3.1�,
3.6�, and 4�, and were then reconstructed using
autocalibrating reconstruction for Cartesian sampling
(ARC) (24) followed by T2*-IDEAL (ARC/T2*-IDEAL)
(7,9). We used the ARC implementation that is found
in the SPIRiT (20) software package. Lastly, the fully
sampled data were undersampled using a variable-
density Poisson disk sampling pattern at the same
net acceleration rates as for ARC/T2*-IDEAL, and
were then reconstructed using the proposed method.
In both ARC/T2*-IDEAL and the proposed method,
the 16 central phase encoding lines were retained to
estimate the 7 � 7 k-space kernels.

A total of three ROIs were placed in each fat fraction
image. The water image was used as a guide to avoid
placing the ROIs in regions of large vessels. Each ROI
was 9 � 9 pixels, which was approximately 2.2 � 2.2
cm2.

Figure 4. The fat fraction image estimates using 1� T2*-
IDEAL as well as ARC/T2*-IDEAL and the proposed method
at four acceleration factors. The table shows the fat fraction
estimates for each ROI. For the accelerated methods, the ROI
fat fraction estimates are displayed as ARC/T2*-IDEAL |
proposed method. Unresolved aliasing artifacts are observed
in all of the images estimated using ARC/T2*-IDEAL (arrow-
heads), with increased severity at the higher acceleration fac-
tors. These artifacts affect the quantitation. Image quality
using the proposed method is largely preserved, although
artifacts are apparent at 4� acceleration (arrows). However,
the accuracy of the fat fraction estimates remains fairly con-
sistent across all acceleration factors.
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RESULTS

Figure 3 shows the estimated fat fraction images for
the three water-fat phantoms using 1� IDEAL without
and with T2* compensation as well as the proposed
method at 3.4� acceleration. By not accounting for
T2* decay, the fat fraction is overestimated by
between 4%–5%. The fat fraction estimates using T2*-
IDEAL and the proposed method are in close agree-
ment with the expected values and a similar image
quality is observed between the two methods.

Figure 4 shows the fat fraction estimates for one slice
using 1� T2*-IDEAL as well as for ARC/T2*-IDEAL
and the proposed method at net acceleration rates of
2.5�, 3.1�, 3.6�, and 4�. Unresolved aliasing artifacts
are seen throughout the images estimated by ARC/
T2*-IDEAL, which causes inaccurate fat fraction esti-
mates especially at the higher acceleration factors.
Using the proposed method, the fat fraction estimates
are in close agreement with the reference values and

Figure 5. Scatterplots and linear trendline equations of the estimated fat fraction versus reference fat fraction for ARC/T2*-
IDEAL (�) and the proposed method (*) at each acceleration factor. Each point in the plot represents the estimates in one
ROI. The identity line is denoted by dashes.

Figure 6. The coefficient of determination (R2) of the linear
trendlines for ARC/T2*-IDEAL (�) and the proposed method
(*) at each acceleration factor. Observe the falloff of the R2

value for ARC/T2*-IDEAL, which indicates a reduced good-
ness of fit of the linear trendline at higher acceleration fac-
tors. The R2 values for the proposed method remain above
0.99 at all acceleration factors.
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image quality is largely preserved, although some arti-
facts are observed at 4� acceleration.

Figure 5 shows scatterplots of the estimated fat
fractions from both ARC/T2*-IDEAL and the pro-
posed method versus the reference fat fraction val-
ues. The equations of the linear trendlines are also
shown. The coefficient of determination (R2) for each
of those linear trendlines is plotted in Fig. 6. The fall-
off of the R2 values for ARC/T2*-IDEAL indicates a
reduced goodness of fit at the higher acceleration fac-
tors, which is qualitatively observed in Fig. 5. In con-
trast, the R2 values for the proposed method remain
above 0.99 for all acceleration factors. Figure 7
shows scatterplots of the standard deviation of the
fat fraction estimates versus the reference fat fraction
value for each of the three reconstruction methods.
For all of the methods, the low R2 values from linear
regression analysis indicate that the standard

deviation does not exhibit a strong linear dependence
on the reference fat fraction value. Qualitatively, one
may observe that the standard deviations tend to be
higher for ARC/T2*-IDEAL than for the other two
methods. This observation is supported by Table 2,
which lists the mean of the standard deviations for
each method.

Figure 7. Scatterplots showing the standard deviation (SD) of the fat fraction estimates in the ROI versus the reference fat
fraction value for T2*-IDEAL (^), ARC/T2*-IDEAL (�), and the proposed method (*). Note that the SD values for T2*-IDEAL
(^) are for 1� acceleration. At all acceleration factors, the average standard deviation for ARC/T2*-IDEAL was higher than
that for the proposed method. For all three methods, the low R2 values indicate that the standard deviation of the fat fraction
estimates does not exhibit a strong linear dependence on the reference fat fraction value.

Table 2

Average of the Standard Deviations of the Fat Fraction Estimates

1x 2.5x 3.1x 3.6x 4x

T2*-IDEAL 3.4% — — — —

ARC/T2*-IDEAL — 6.3% 10.5% 16.7% 30.8%

Proposed method — 3.7% 4.1% 4.2% 4.4%

Each entry was calculated as the simple average of the standard

deviation values over all ROIs.
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DISCUSSION

The findings from this preliminary study demonstrate
that the proposed parallel imaging and compressed
sensing framework can accurately estimate liver fat
fraction at acceleration factors that are higher than
those achievable by ARC/T2*-IDEAL. Linear regres-
sion showed the accuracy of the fat fraction estimates
from the proposed method at acceleration factors up
to 4�. Further, the average standard deviation of the
fat fraction estimates at each acceleration factor was
within 1% (in absolute terms) of that using 1� T2*-
IDEAL, which suggests relatively minor noise amplifi-
cation. Despite these quantitative findings, a qualita-
tive perspective reveals the presence of image arti-
facts, especially at 4� acceleration, that could
degrade the confidence of the estimated fat fractions
in prospective studies. Therefore, it would be prema-
ture to draw final conclusions about the acceleration
potential of the proposed method until a further anal-
ysis is performed that uses a larger subject cohort
and radiologists’ evaluations of image quality.

The signal model in Eq. [1] assumes that water and
fat share a common R2* value, which is not true in
general. This assumption is known to introduce bias
into the fat fraction estimate. However, at clinically
relevant values of SNR and fat fraction, the introduced
bias is outweighed by an improvement in noise per-
formance when compared to the dual-R2* model
(25,26). Thus, it has been suggested by Reeder et al
(26) that the use of the single-R2* model is appropri-
ate in this setting.

Our findings indicate that cubic B-splines provide a
representation of the B0 field map that is sufficient
enough for accurate fat fraction quantitation. The use
of cubic B-splines imposes a parametric model on the
B0 field map, which allows for the field map to be rep-
resented using fewer variables (ie, B-spline coeffi-
cients) than the number of pixels. While this modeling
is beneficial for estimating the B0 field map from
undersampled measurements, it also prevents the
field map estimate from assuming arbitrary values.
Thus, it could have been the case that small errors in
the B0 field map estimate caused significant errors in
the fat fraction estimate.

A limitation of this study was that the under-
sampled k-space measurements were obtained by ret-
rospectively downsampling the fully sampled data
rather than by truly acquiring them in an accelerated
acquisition. Additional limitations of the present work
include the need for a user-defined regularization pa-
rameter and a relatively long reconstruction time of
�15 minutes per slice. It is worth noting that the
same value of l was used for all reconstructions, so it
may be reasonable to fix this value for all future
acquisitions that use similar parameters. However, for
a more general approach, recent developments from
Khare et al (27) can be incorporated both to free the
user from selecting any regularization parameters and
to reduce the reconstruction time using iterative soft
thresholding algorithms.

In conclusion, we have developed and demonstrated
the feasibility of a joint parallel imaging and

compressed sensing framework for liver fat quantita-
tion. The proposed method accurately estimated liver
fat fraction at acceleration factors that are higher
than those achievable by a sequential parallel imaging
and water-fat imaging method.
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