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Automatic Intra-Subject Registration-Based
Segmentation of Abdominal Fat From
Water–Fat MRI

Anand A. Joshi, PhD,1* Houchun H. Hu, PhD,1 Richard M. Leahy, PhD,1
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Purpose: To develop an automatic registration-based seg-
mentation algorithm for measuring abdominal adipose
tissue depot volumes and organ fat fraction content from
three-dimensional (3D) water–fat MRI data, and to evalu-
ate its performance against manual segmentation.

Materials and Methods: Data were obtained from 11
subjects at two time points with intermediate reposition-
ing, and from four subjects before and after a meal with
repositioning. Imaging was performed on a 3 Tesla MRI,
using the IDEAL chemical-shift water–fat pulse sequence.
Adipose tissue (subcutaneous—SAT, visceral—VAT) and
organs (liver, pancreas) were manually segmented twice
for each scan by a single trained observer. Automated
segmentations of each subject’s second scan were gener-
ated using a nonrigid volume registration algorithm
for water–fat MRI images that used a b-spline basis for
deformation and minimized image dissimilarity after the
deformation. Manual and automated segmentations were
compared using Dice coefficients and linear regression of
SAT and VAT volumes, organ volumes, and hepatic and
pancreatic fat fractions (HFF, PFF).

Results: Manual segmentations from the 11 repositioned
subjects exhibited strong repeatability and set performance
benchmarks. The average Dice coefficients were 0.9747
(SAT), 0.9424 (VAT), 0.9404 (liver), and 0.8205 (pancreas);
the linear correlation coefficients were 0.9994 (SAT volume),
0.9974 (VAT volume), 0.9885 (liver volume), 0.9782 (pan-
creas volume), 0.9996 (HFF), and 0.9660 (PFF). When com-
paring manual and automated segmentations, the average
Dice coefficients were 0.9043 (SAT volume), 0.8235 (VAT),
0.8942 (liver), and 0.7168 (pancreas); the linear correlation
coefficients were 0.9493 (SAT volume), 0.9982 (VAT volume),

0.9326 (liver volume), 0.8876 (pancreas volume), 0.9972
(HFF), and 0.8617 (PFF). In the four pre- and post-prandial
subjects, the Dice coefficients were 0.9024 (SAT), 0.7781
(VAT), 0.8799 (liver), and 0.5179 (pancreas); the linear cor-
relation coefficients were 0.9523 (liver volume), 0.8760 (pan-
creas volume), 0.9991 (HFF), and 0.6338 (PFF).

Conclusion: Automated intra-subject registration-based
segmentation is potentially suitable for the quantification
of abdominal and organ fat and achieves comparable quan-
titative endpoints with respect to manual segmentation.
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THE ACCUMULATION OF abdominal subcutaneous,
visceral, and organ (hepatic, pancreatic) fat has
adverse effects on health and increases the risks of
heart disease, diabetes, metabolic disorders, and cer-
tain cancers (1,2). Subcutaneous and visceral adipose
tissue (SAT, VAT) volumes and fat content in the liver
and pancreas are important quantitative endpoints in
obesity research, and MRI has been increasingly used
in recent literature to assess and track these end-
points (3–12). Specifically, monitoring changes in
these values is critical in longitudinal studies, which
require the same subject to be imaged and analyzed
repeatedly. Therefore, the ability to rapidly and accu-
rately determine these values at each time point will
be beneficial to researchers who are investigating the
progression of obesity and assessing the efficacy of
intervention in longitudinal studies.

The large size of three-dimensional (3D) abdominal
water–fat MRI data, usually on the order of 50–80
contiguous axial slices, a significant image-processing
task, one that typically requires manual analysis by a
trained evaluator with assistance from commercial
software or dedicated programs (13). While prior work
has demonstrated the feasibility of semiautomated to
near-automated segmentation tools for quantifying
the SAT depot in animal and human studies, cur-
rently a moderate level of user intervention is still
required for the VAT depot and abdominal organs (14–
18). These endpoints are particularly challenging as
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the depots and organs can vary in shape and size
from subject-to-subject. Based on our own experience
from over 200 datasets processed at our institution, it
takes approximately 1 h of manual segmentation for
an experienced evaluator to process and analyze one
3D abdominal MRI dataset. The main limitation of
this approach in longitudinal studies is the need to
execute such time-intensive workflow for every image
set, even for the same subject at two or more time
points. An automatic method based on image registra-
tion would be attractive and can potentially speed up
the segmentation workflow by minimizing the need for
manual processing.

Nonrigid image registration has been extensively
applied to human brain MRI data (19–22). It has been
used to study changes in brain morphology in single sub-
jects over time and across populations by transforming
the imaging data to a common coordinate system in
which anatomical structures are aligned. Image registra-
tion has also been used as the basis for segmentation.
The segmentation labels from a reference or baseline
dataset can be warped to fit a target dataset, thus effi-
ciently segmenting the target data. In cases where a large
training database of labeled scans is available, machine
learning approaches such as Bayesian segmentation can
be used for determining the labels of subjects automati-
cally (23). Registration-based approaches have been
widely used in brain imaging (24–27) and small animal
imaging (28,29). Note that a detailed comparison of regis-
tration algorithms is presented elsewhere (30).

In this work, a framework is introduced that applies
deformable nonlinear registration between 3D abdom-
inal MRI data at two time points. Manual segmenta-
tion of the MRI is performed at one time point which
serves as a baseline. These baseline manual labels
are transferred to the data at a different target time
point using automatic registration to generate auto-
matic labels. While several previous reports have pre-
sented similar automated registration algorithms,
including atlas-based approaches and have reported
strong performance metrics for SAT and VAT volumes
(31–33), the present work additionally focus on ab-
dominal organs including the liver and the pancreas.
We perform manual segmentation of these organs and
generate automatic labels for the organs at the images
at the target endpoints using the registration-based
segmentation. Additionally, we also evaluate the
organ-wise accuracy of the automatic labels as well as
quantitative fat fraction endpoints. In the next sec-
tion, we describe our procedure where manually seg-
mented baseline labels from an initial time point are
generated and subsequently deformed to achieve
automated segmentation of data from the same sub-
ject at target time points. The performance of the pro-
posed automated registration-based algorithm is eval-
uated against manual segmentations performed by a
single evaluator.

MATERIALS AND METHODS

MRI Protocol and Data Collection

All data were acquired on a 3 Tesla whole-body
human scanner (Signa HDx, 15M4, GE Healthcare,

Waukesha, WI), using an investigational research ver-
sion of the chemical-shift-based water–fat pulse
sequence known as IDEAL (Iterative Decomposition
with Echo Asymmetry and Least squares estimation)
(34). The sequence is based on a 3D spoiled gradient
echo with multi-peak spectral modeling of fat and T�

2

correction (35). It was used to minimize T1 weighting,
and approximate proton-density contrast (36). All
data were acquired with an eight-element torso coil
array with the subject lying in the supine position
and entering the magnet bore feet first. In all exami-
nations, 60 to 80 axial 5-mm contiguous slices were
acquired to provide coverage of the whole abdomen
from the top of the liver to at least the L5 vertebrae.
The volumetric data were acquired in five to six con-
secutive breathholds, each lasting 10 to 15 s. In-plane
spatial resolution varied from 1.5 to 2.5 mm depend-
ing on subject body size with a 160 � 160 sampling
matrix. Other imaging parameters were: flip angle ¼
5� (to avoid T1-bias in the fat fraction estimates) (36),
bandwidth ¼ 6125 kHz, six echoes, echo train length
¼ 3, echo spacing ¼ 0.8 ms, first-echo ¼ 1 to 1.5 ms,
TR ¼ 9 to 11 ms, and two-fold SENSE (37) parallel
imaging. Online image reconstruction produced co-
registered water-only, fat-only, in-phase, opposed-
phase, T�

2 and normalized 0–100% fat fraction image
series. All participants provided informed consent and
the above protocol was approved by the local ethics
and review board. Two separate sets of MRI experi-
ments were performed:

Dual Time Point Data (REPOS)

In 11 subjects, the 3D IDEAL protocol was imple-
mented twice with intermediate repositioning.
Between the scans, both the subject and torso coil
array were completely removed from the scanner. The
goal of this repositioning (REPOS) was to mimic data
collection at two longitudinal time points but with no
change in abdominal and organ fat quantities.

Pre- and Postprandial Data (MEAL)

In four additional subjects, the MRI protocol was
implemented twice with intermediate repositioning
and consumption of a meal. The first scan was per-
formed in the morning, after overnight (>8 h) fasting.
The second scan was performed approximately 1 h
postprandial. The meal consisted of a sandwich and
yogurt, although it was not standardized. The goal of
this exercise was to determine the impact of stomach
and abdominal distention on the proposed automatic
registration-based segmentation algorithm. As in the
REPOS exercise, we did not anticipate any absolute
change in abdominal and organ fat quantities due to
meal intake.

Manual Segmentation

A single evaluator performed manual segmentation of
all datasets using a commercial image analysis soft-
ware package (Magog, Quebec, Canada) to obtain the
following quantitative endpoints: volumes of SAT,
VAT, liver, and pancreas, as well as hepatic (HFF) and
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pancreatic (PFF) fat fraction measures. The tool is
widely used by investigators in body composition and
obesity research (13). For the REPOS data, a total of
22 3D datasets were acquired and analyzed (11 sub-
jects, 2 time points each). The evaluator performed
two independent series of segmentations on these 22
datasets to generate intra-operator repeatability met-
rics. Thus, a total of 44 segmentations were produced
from REPOS data. During the independent repeat
analysis, the operator did not refer to the previous
segmentation results. Furthermore, the order in
which the datasets were segmented was randomized
and analysis was performed on different days. The av-
erage time needed to segment each 3D dataset was
approximately one hour. This repeat analysis was
used to establish performance benchmarks. For the
MEAL data, the operator performed two segmenta-
tions per subject, one for the image series acquired in
the fasting state, and one for the image series
acquired after meal consumption. For all image seg-
mentations, SAT, VAT, liver, pancreas, and addition-
ally the kidneys (for reference) were manually labeled.
Figure 1 illustrates representative examples from one
of the datasets used in this study. Orthogonal views
are shown in Figure 1a. Figure 1b shows two axial sli-
ces, along with corresponding manually segmented
labels generated using software.

Intensity Correction

Two forms of undesirable signal intensity variations
are introduced during the MRI data acquisition pro-
cess. The first is caused by the imperfect RF excitation,
which produces signal-intensity variations along the
superior/inferior direction, corresponding to the slab
excitation profile of the time-bandwidth limited RF

pulses used in each 3D breathhold volume. We retroac-
tively corrected for this signal variation in the data by
normalizing to a signal profile measured in a homoge-
neous gel phantom obtained using the same protocol.

The second form of intensity variation is due to re-
ceiver coil sensitivities from the eight-element torso
array. We retroactively corrected for this variation by
estimating a bias map from the proton density
weighted in-phase image series (38). After excluding
background air for each slice, voxels with signal
intensities in the top 50 percentile were set as the
anchor points for a 2D b-spline fit (38,39). The recip-
rocal of the resultant slice-by-slice fitted b-spline bias
maps was applied separately to the water and fat
image series to yield signal-intensity corrected data
for further registration.

Volume Registration-Based Segmentation

Registration of the intensity-corrected datasets is sub-
sequently performed for each of the 22 REPOS vol-
umes (11 pairs) and the 8 MEAL volumes (4 pairs). A
rigid registration was first applied to correct for bulk
rotations and translations. A nonrigid registration was
then performed using b-splines based on previously
described methods (39–41).

Water and fat images were selected for registration
in the present work. Alternatively, normalized fat frac-
tion images, which do not suffer from RF transmit
and receive signal inhomogeneities, could have also
been chosen. We initially used fat fraction images but
found areas with low signal (background, air, gas) to
be problematic and difficult to mask. We achieved bet-
ter performance using intensity-corrected fat and
water images. Let us denote the fat volumes of the
subject by FB(x,y,z) and FT(x,y,z), for time point 1
(baseline) and time point 2 (target) respectively. Simi-
larly, let us denote the two water volumes by WB(x,y,z)
and WT(x,y,z). Furthermore, let the transformation
T(x,y,z) represent a deformation map that links any
point in the baseline volume to its corresponding
point in the target volume. The 3D deformation field
T(x,y,z) is represented using a cubic b-spline basis
with uniformly spaced knots.

The smoothness of the deformation is measured by
a generalization of the elastic energy in 3D given by
CsmoothðT Þ ¼

RRR
½r2 þ grðr�Þ�T ðx ;y; zÞdxdydz (41). This

expression simplifies due to b-spline basis and has a
closed form which is a function of spline control ver-
tex coefficients (35,36). The coefficient c ¼ 0.2 was
used for the results presented here.

The following cost function was used to measure
dissimilarity in the matched images:

CrmsðFB;FT ;WB;WT ;T Þ ¼
ZZZ ��FT ðx ;y; zÞ

�FBðT ðx ;y; zÞÞ
��2

dxdydz

þ
ZZZ ��WT ðx ;y; zÞ�WBðT ðx ;y; zÞÞ

��2
dxdydz:

In this cost function, equal weight was assigned to
errors in the fit of water and fat images. The

Figure 1. Two representative axial slices: gray-scale fat frac-
tion (top) and corresponding manually segmented labels (bot-
tom) are shown. Fat fraction is displayed on a scale from 0%
(black) to 100% (white). Segmentation labels are: red, SAT;
green, VAT; blue, liver; purple, pancreas. The kidneys are also
shown for illustration (yellow/orange). [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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dissimilarity measure was combined with the smooth-
ness regularizer to form the total cost function
CrmsðFB;FT ;WB;WT ;T Þ ¼ CsmoothðT Þ. This function was
minimized using the L-BFGS optimization scheme
described in (42). L-BFGS is the low memory version
of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton method that has been shown to per-
form well for image registration (42).

Figure 2 shows a flowchart summarizing our vol-
ume registration-based segmentation algorithm. The
intensity-corrected baseline and target datasets are
inputs. The output is the deformation field T(x,y,z)
that defines the point-by-point correspondence
between the baseline and target volumes. This defor-
mation field is subsequently applied to the baseline
segmentation labels to generate automatic labels for
the target volume. As described in more detail in the
following section, automatic labels are then compared
and evaluated for quantitative fat accuracy against
manually segmented labels of the target volume.

Evaluation

The Dice coefficient (DC) metric (43) was used to
assess the degree of overlap and similarity between
segmentation labels or sets. They range from 0 to 1,
where 0 indicates that there is no overlap and 1 signi-
fies perfect overlap between the two sets. The coeffi-
cients were computed for manual segmentation ver-
sus registration-based automatic segmentation in
both REPOS and MEAL cohorts. Additionally, bench-
mark DCs were computed for the repeatability analy-
sis in the REPOS data.

SAT, VAT, liver, and pancreas volumes were easily
computed for each manual and automated label set
by summing the total number of corresponding vox-
els and multiplying by the voxel resolution. HFF and
PFF were estimated by segmenting the organs man-
ually on the IP, OP, water, and fat series first, and
transferring the labels to the corresponding fat frac-
tion image to obtain distribution values. For the
automatically registered labels, the labels were
reloaded and overlaid atop the fat fraction images to
obtain the distribution values. Linear regression was
used to evaluate the level of agreement between each
of the estimated volume and fat fraction quantities.

Pearson correlation coefficients were computed for all
comparisons.

RESULTS

Table 1 contains demographic information for the all
of the REPOS and MEAL subjects. Figure 3 contains
representative axial slices from one MEAL dataset and
illustrates the significant expansion of the stomach
and displacement of surrounding organs and adipose
tissues due to food intake. Figure 4 illustrates the
effectiveness of the 2D slice intensity correction
scheme. Figure 4a and 4b shows water and fat images
before and after intensity correction, respectively. Fig-
ure 4c contains histograms of fat signal for SAT and
VAT depot before and after correction. The histograms
for other organs were similar. There was approxi-
mately three-fold reduction in the coefficients of varia-
tions (standard deviation / mean) for fat and water
images after the correction. The intensity correction
and registration-based segmentation algorithm was
implemented in Matlab and took approximately 15
min of computation time per dataset on a computer
with Intel Core 2 2.8 GHz processor, memory.

Figure 5 illustrates a representative result from the
registration-based automated segmentation. Axial and
sagittal views from one REPOS subject are shown. In
Figure 5a, manually segmented color labels from the
baseline volume are overlaid atop the target dataset.
As expected, before registration, there is a significant
mismatch between the labels and the underlying gray-
scale data, as evidenced in the SAT depot (red), VAT
depot (green), and liver (blue). Figure 5b shows the
deformation field generated by the registration algo-
rithm displayed by warping a regular grid. Figure 5c
highlights the deformed baseline labels. Note that

Figure 2. Flow chart of the automated registration-based segmentation approach. Baseline and target datasets each consist
of perfectly registered 3D volumes representing fat and water signals. Both datasets undergo intensity correction, including
bias-field correction and slab profile correction, before nonrigid registration. The output of registration is a deformation field,
which is then applied to the manual segmented labels from the baseline dataset. The end result is a deformation field (one-
to-one mapping) between baseline and target datasets, and a set of automatically generated labels for the target dataset.

Table 1

Subject Demographics and Anthropometric Measures

of Study Cohort

Age

(yr)

Weight

(kg)

Height

(cm)

BMI

REPOS (n¼11)

Mean (SD)

39.5

(11.0)

76.16

(17.0)

166.2

(13.1)

27.3

(3.7)

MEAL (n¼4)

Mean (SD)

32.5

(1.7)

75.6

(14.3)

172.8

(10.8)

24.9

(2.0)
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Figure 3. Co-registered axial fat and water images from one volunteer (top) pre-prandial and (bottom) post-prandial. After a
meal, the stomach (red dotted) is distended and displaces the spleen (green) and a substantial amount (see arrows). [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Axial slice water and fat images before (a) and after (b) bias field correction. c: Histograms of fat signal for SAT
and VAT before and after bias field correction.
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nearly all of the mismatches have been resolved. For
comparison, Figure 5d contains manually segmented
labels from the target volume.

Table 2 summarizes the distribution of DCs for the
REPOS and MEAL cohorts. Values are reported for a
comparison between repeat manual segmentations by
a single operator (e.g., benchmark), and between
manual and automated segmentations. For the
REPOS cohort, intra-operator performance demon-
strated a very high level of agreement for SAT, VAT,
and the liver, but not the pancreas. A good level of
agreement was achieved between manual and auto-
mated segmentations for SAT and the liver. The corre-
sponding DCs were within 10% of the performance
benchmarks set by the intra-operator exercise. In the
MEAL cohort, the performance of automated segmen-
tation was comparable to that of the REPOS cohort.

Table 3 reports individual average tissue volumes
for SAT, VAT, liver, and pancreas, as well as average
HFF and PFF values. The average absolute difference
between manual and automatic measurements of HFF
and PFF were 0.4674 and 2.76, respectively. Table 4
reports the Pearson linear correlation coefficients for
the six quantitative fat endpoints (SAT volume, VAT
volume, liver volume, pancreas volume, HFF, and
PFF) from the REPOS and MEAL cohorts. A high level
of performance was detected for both the manual and

the automatic method. The MEAL cohort was more
challenging in terms of registration because of the sig-
nificant expansion of stomach and shifting of sur-
rounding organs. The performance of the automatic
method was good showing robustness of the method,
except for in the pancreas.

DISCUSSION

This study suggests the feasibility of using automated
image registration methods for the segmentation of adi-
pose tissue depots and organs from 3D abdominal fat–
water MRI. This type of approach is immediately appli-
cable to longitudinal studies in which a baseline time
point can be analyzed fully using manual techniques
and labels propagated to future time points for tracking
of relevant fat distribution measures. The performance
of the automated segmentation process was only
slightly worse than the repeatability of manual segmen-
tation, for the SAT depot, the VAT depot, and the liver.

The performance of automated segmentation was
significantly worse in the pancreas than in the other
regions of interest. This is likely due to the fact that
the pancreas is small in volume and is surrounded by
visceral fat. Consequently, small inaccuracies in its
labeling could lead to erroneous inclusion of fat voxels

Figure 5. Representative results from one volunteer. All underlying gray scale images are from the ‘‘target’’ time point. a:
Overlay of baseline labels shows large-scale mismatches in the SAT, VAT, and multiple organs (arrows). b: Computed defor-
mation field that maps equivalent positions in the baseline and target volumes (to be applied to baseline labels). c,d: Overlay
of warped baseline labels, showing accurate segmentation of the abdominal adipose tissue depots and organs (c) in compari-
son to manual segmentation of the target dataset (d). Segmentation labels: Red, SAT; Green, VAT; Blue, Liver. Labels for kid-
neys also shown highlight the effectiveness.

Table 2

Average Dice Coefficient and Standard Deviations (in Parentheses) Between Segmentation Labels for Subcutaneous Adipose Tissue

(SAT), Visceral Adipose Tissue (VAT), Hepatic Fat Fraction (HFF), and Pancreatic Fat Fraction (PFF)*

SAT VAT HFF PFF

REPOS (n¼11) Manual vs. manual 0.9747 (0.0146) 0.9424 (0.0348) 0.9407 (0.0111) 0.8205 (0.1112)

Manual vs. automated 0.9043 (0.0622) 0.8235 (0.0943) 0.8942 (0.0453) 0.7168 (0.1338)

MEAL (n¼4) Manual vs. automated 0.9024 (0.0235) 0.7781 (0.066) 0.8799 (0.0333) 0.5179 (0.2300)

*For the REPOS cohort, intra-operator performance metrics are reported for each data set at each of the two time points were independ-

ently analyzed twice. These values serve as reference benchmarks. For both REPOS and MEAL cohorts, the performance of the

automated algorithm is shown.
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and overestimation of the organ’s fat fraction. This
makes its delineation even by manual segmentation
challenging and such difficulties were evident in the
results from the manual evaluator (Table 2). Addi-
tional work is needed for more accurate manual and
automated segmentation of the pancreas. It is worth
noting that, while it takes an experienced operator
approximately 45 to 60 min to manually segment the
full dataset, and a majority of time is spent on the
large adipose tissue depots and the liver. If segmenta-
tion of small organs such as the pancreas remains a
problem, one may consider using automated segmen-
tation for the large fat depots and liver, as that has
been demonstrated to be reliable, and rely on manual
segmentation for the pancreas. We note that in addi-
tion to the segmentation time required for manually
delineating the organ boundaries, the manual rater
needs to be trained for this purpose, especially if
accurate organ segmentation is required. Additionally,
inter-rater error is introduced when scans are seg-
mented by multiple manual raters. Notwithstanding
the various tradeoffs in automated and manual
approaches, investigators can decide to use an appro-
priate approach based on performance benchmarks
presented in this study. The present study demon-
strates feasibility of the proposed automated method.
Logically, the next step in experiments is to test the pro-
posed automated method in a real longitudinal study,
while maintaining the use of manual segmentation (as
ground truth) to assess tradeoffs in accuracy and time.

Dice coefficients were used as a metric to quantify
the amount of overlap between the warped baseline
and manually generated target labels. Dice coefficients
have been used often for evaluating the accuracy of
registration methods because they provide a quantita-
tive measure of registration accuracy, ranging from 0
to 1, corresponding to no overlap and complete overlap,
respectively. They are also easy to compute. However,
any overlap measure, including the Dice coefficient,
can be particularly sensitive to misregistration of thin
structures, which possibly accounts for the fact that

our results were worse for smaller organ ROIs. This is
because for such structures, a misalignment of only a
few pixels can reduce the percentage overlap signifi-
cantly. Dice coefficients measure volumetric overlaps,
whereas correlation measures closeness of the numeri-
cal endpoints of organ-wise. Therefore, we would argue
that these two each provide unique information about
the performance of the segmentation algorithm (Dice
coefficients) and its impact on the measurement end-
points (correlation).

The present study can also benefit from higher spa-
tial resolution, which was not particularly high (5 mm
across slices and 1.5–2.5 mm in-plane, within slices)
in the current studies. The spatial resolutions used
were chosen to facilitate repeated breathholds with
two-fold accelerated parallel imaging. Consequently,
deformation maps within adipose tissue depots and
organs may be inaccurate due to an insufficient num-
ber of features within these regions. It is likely that
registration accuracy will improve when applied to
higher resolution images in which fascia, muscle bun-
dles, and vasculature within organs are clearly visual-
ized. We also tested the algorithm using fat fraction
images instead of fat and water images separately. One
disadvantage of using fat fraction images is that
regions with low total signal (e.g., background, air, gas)
have noisy fat fractions which confound intensity-
based methods. Furthermore, regions of this type
within the body are difficult to automatically identify
and exclude. We also found that the use of intensity-
corrected water and fat images together rather than ei-
ther one in isolation, led to improved performance.

In conclusion, this study demonstrates the strong
potential of automatic segmentation of 3D abdominal
MRI for quantification of abdominal adipose tissue
volumes and liver fat fraction. The proposed approach
is potentially suitable for longitudinal studies in
which a single baseline dataset can be manually ana-
lyzed in detail for each subject. We note that the eval-
uation in this study was based on repeated measure-
ments, with a meal consumed between scans.

Table 3

Measured Adipose Tissue Volumes, Organ Volumes, and Organ Fat Fractions Average and Standard Deviation (in Parenthesis)

for the REPOS and MEAL Cohorts

SAT

volume

(ml)

VAT

volume

(ml)

Liver

volume

(ml)

Pancreas

volume

(ml)

Hepatic

fat frac

(%)

Pancreas

fat frac

(%)

REPOS (n¼11) Manual 3836.20 (1335.86) 2371.59 (1385.34) 1483.05 (343.87) 39.38 (12.80) 7.54 (5.21) 5.16 (2.72)

Automatic 3748.66 (1443.98) 2364.94 (1387.41) 1425.51 (349.67) 40.37 (14.40) 7.95 (5.18) 5.03 (4.63)

MEAL (n¼4) Manual 3670.87 (1573.83) 1555.95 (756.52) 1106.68 (247.74) 33.39 (15.25) 5.43 (2.79) 5.10 (2.60)

Automatic 3554.29 (1360.15) 1497.99 (760.84) 1100.06 (294.14) 39.51 (17.93) 5.83 (2.90) 5.24 (4.84)

Table 4

Linear Correlation Coefficients for Adipose Tissue Volumes and Organ Fat Fractions for the REPOS and MEAL Cohorts

SAT

volume

VAT

volume

Liver

volume

Pancreas

volume

Hepatic

fat frac

Pancreas

fat frac

REPOS (n¼11) Manual vs. manual 0.9994 0.9974 0.9885 0.9782 0.9996 0.9660

Manual vs. automated 0.9493 0.9982 0.9326 0.8876 0.9972 0.8617

MEAL (n¼4) Manual vs. manual 0.9999 0.9985 0.9789 0.9765 0.99998 0.9787

Manual vs. automated 0.9889 0.9902 0.9523 0.8760 0.9991 0.6338
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Additional evaluation against manual segmentation
on longitudinal data can provide more insight into the
performance and suitability of the automated method
for longitudinal studies. It also suggests many oppor-
tunities for future work, including improvements in
intensity correction, improvements in nonrigid regis-
tration, and improvements in the automated segmen-
tation of small organs, as well as the pursuit of regis-
tration between subjects.
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