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Water–fat separation techniques play an important role in a

variety of clinical and research applications. In particular, mul-

tiecho separation methods remain a topic of great interest

due to their ability to resolve water and fat images in the

presence of B0-field inhomogeneity. However, these methods

are inherently slow as they require multiple measurements.

An accelerated technique with reduced k-space sampling is

desirable to decrease the scan time. This work presents a

new method for water–fat separation from accelerated multie-

cho acquisitions. The proposed approach does not require

the region-growing or region-merging schemes that are typi-

cally used for field map estimation. Instead, the water, fat,

and field map signals are estimated directly from the

undersampled k-space measurements. In this work, up to

2.53-acceleration is demonstrated in a water–fat phantom,

ankle, knee, and liver. Magn Reson Med 67:650–659, 2012.
VC 2011 Wiley Periodicals, Inc.
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Water–fat separation techniques play an important role

in a variety of clinical and research applications. These

methods have been used to detect fatty infiltration in the

myocardium (1), to measure hepatic fat fraction (2), to

image cartilage in the knee (3), and to identify brown

adipose tissue (4). In particular, multiecho separation

methods based on the work of Dixon (5) remain a topic

of great interest due to their ability to resolve water and

fat images in the presence of B0-field inhomogeneity. In

these methods, k-space data are collected at multiple

echo times (TEs) to resolve the water, fat, and field map

signals. Separation occurs via a number of routes, one of

which is the iterative decomposition of water and fat

with echo asymmetry and least-squares estimation

(IDEAL) (6,7). This technique has become very popular

due to its general formulation that allows for multiple

chemical species and arbitrary TEs, while achieving the

Cramer–Rao bound for an unbiased estimator (8). How-

ever, multiecho methods are inherently slow as measure-

ments at multiple time points are required. This require-

ment limits the spatial resolution and volumetric

coverage while increases the possibility of motion arti-

facts. An accelerated technique with reduced k-space

sampling is desirable to decrease the total scan time of

these multiecho acquisitions.

At the heart of multiecho methods lies estimation of

the B0-field map inhomogeneity. The estimation of the

field map is a challenging task as the least-squares cost

function is nonconvex and many global minima may

potentially exist. This ambiguity is typically resolved by

incorporating the additional knowledge that the true

field map is spatially smoothly varying. Many methods

focusing on the estimate of the field map have been pro-

posed, each essentially differing in how the presumed

knowledge of smoothness is used. Yu et al. (9) developed

a region-growing (RG) method in which the initial field

map guess for the current pixel in question was deter-

mined by the field map values of previously estimated

neighboring pixels. Berglund et al. have also recently

developed a multiseed RG scheme (10). In their work, Lu

and Hargreaves (11) first determine all the field map val-

ues for each pixel, within an expected range of field

inhomogeneity, which would yield a local minimum in

the least-squares cost function. They then use a field

map growth scheme to assign estimates to each pixel

while ensuring field map smoothness. Jacob and Sutton

(12) take a conceptually similar route, although the

details quickly diverge. Here, the possible field map val-

ues for each pixel are determined via a modification of

the harmonic retrieval framework. The ambiguity is

resolved by solving a cost function that promotes

smoothness of the field map. A different approach has

been proposed by Tsao and Jiang (13). Rather than con-

sidering each individual pixel, this work first treats each

of echo-time images as one large pixel and estimates one

field map value for all pixels. Subsequently, the images

are decomposed into smaller regions and the field map

value is updated for each region. This approach can be

continued until the region size becomes one pixel. Last,

recent work from Hernando et al. (14) aims to estimate

the field map image on a finely discretized grid. Using

the VARPRO formulation (15) for dimensionality reduc-

tion and a regularization term that penalizes nonsmooth

field maps, a graph cut-based algorithm is used to find

the desired field map. All the aforementioned works rely

on knowledge of the fully k-space sampled multiecho

images, which are not inherently obtained in an acceler-

ated acquisition.

Ma et al. has applied SENSE parallel imaging (16) to
accelerate multiecho acquisitions (17). Although straight-
forward, it is not clear how phase errors in the SENSE
reconstruction would propagate to the separation step as
preservation of phase information is critical. Reeder
et al. (18) proposed to use the homodyne reconstruction
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technique for partial k-space acquisitions. The need for a
fully sampled central k-space region necessarily limits
this technique to acceleration rates of less than two.
Recently, compressed sensing (CS) (19–21) has been
used to accelerate water–fat imaging (22), where the
water, fat, and field map images are solved simultane-
ously using sparsity constraints on each of the images.
The field map is initialized by analytically finding the
possible field map solutions from a fully sampled central
k-space region, followed by a region-merging scheme to
impose smoothness.

In the present work, a new method is proposed for
water–fat separation from accelerated multiecho acquisi-
tions. The traditional single-pixel model is generalized
to consider estimation of the water, fat, and field map
images directly from the undersampled k-space data.
Similar to IDEAL, the estimation of water and fat images
and the field map image is performed iteratively. Water
and fat images are estimated via CS by exploiting their
compressibility in the wavelet domain. In contrast to the
work of Doneva et al. (22), the proposed approach does
not require an initial seed voxel or a region-growing/
region-merging scheme to impose field map smoothness.
Instead, the field map estimate is updated in a restricted
linear subspace. This restriction is enforced to avoid con-
verging to local minima field map estimates, which may
cause a water–fat swap. As we explain the field map
update procedure in later sections, it may be helpful to
remember that the l1-regularization term commonly
found in CS reconstruction is not used to estimate the
field map update term. The two steps (i.e. water–fat esti-
mation and field map update) are iterated until the field
map estimate converges. At this time, the linear sub-
space becomes less restrictive and the iterations are
repeated. This process continues until a predefined stop-
ping point is reached. We demonstrate up to 2.5�-accel-
eration in a water–fat phantom, ankle, knee, and liver.

THEORY

We begin with a mathematical description of the model,
which is a generalization of the conventional single-pixel
model. After establishing this, we describe in detail the
water and fat image estimation as well as the approach
for updating the field map estimate. We then conclude
this section by summarizing the approach.

Signal Model

At echo-time tn the single-pixel image-domain signal
may be modeled as

spðtnÞ ¼ rpw þ ðrpf � dnÞ
� � � ej2pcptn ½1�

where rw and rf are, respectively, the unknown complex
water and fat signals and c represents the unknown real-
valued B0-field inhomogeneity (Hz). The superscript p ¼
1:P denotes the pixel, the subscript n serves as an index
over the TE points with n ¼ 1:N, and the parameter dn is
a known complex-valued term resulting from the chemi-
cal shift between water and fat (23).

Extending the single-pixel model to an image model,
we have

sðtnÞ ¼ Enðqw þ ðqf � dnÞÞ ½2�

where a bold typeface is used for matrix–vector notation
and En is a P � P diagonal matrix with ej2pc

ptn on the pth
diagonal.

Last, as the measurement data are undersampled k-
space, we relate the unknowns to the measurements as

kðtnÞ ¼ FuðEnðqw þ ðqf � dnÞÞÞ ½3�

where Fu represents the undersampled Fourier transform
(21) and k(tn) represents the undersampled k-space at
echo-time tn. Equation 3 presents the mathematical
description of the model that relates the unknowns to the
measurement data. We do not model chemical-shift off-res-
onance (24) because the effects of this artifact are minimal
in Cartesian acquisitions with a high sampling bandwidth.

Estimation

The unknown parameters are estimated via an iterative
two-step process, similar to the method proposed by
Reeder et al. (6). In the first step, the water and fat images
are estimated while the current field map image estimate
is maintained. We exploit the presumed compressibility
of both the water and fat images to guide the reconstruc-
tion to the desired solution. In the next step, the estimate
of the field map is updated. Rather than updating the field
map estimate in the full-dimensional space, we restrict
the update to a subspace to avoid falling into local min-
ima solutions. The restriction on the subspace is gradu-
ally eased in further field map update steps.

Water–Fat Image Estimation

Fixing the field map image estimate c, Eq. 3 is linear in
the unknown water and fat images. Additionally, MR
images have been shown to be highly compressible in
fixed transforms (25). Guided by the theory of CS, we
estimate the water and fat images as

min
rw;rf

XN
n¼1

jjkðtnÞ�FuðEnðqwþqf �dnÞÞjj22þljW�qwj1þljW�qf j1
" #

½4�

where W represents an invertible transform in which the
water and fat images are expected to be highly compress-
ible and the parameter l represents the tradeoff between
the importance of data fidelity versus the prior informa-
tion of image compressibility. This parameter can be dif-
ferent for W�rw and W�rf, but we use the same one for
simplicity while acknowledging the potential for further
optimization.

By formulating and thus solving for images rather than
individual pixels, we are able to incorporate knowledge
of the images that we hope to reconstruct. The recon-
struction problem posed in Eq. 4 is a convex function
that can be reliably solved in a variety of ways (26).

Field Map Image Update

Estimating the field map is not as straightforward as esti-
mating the water and fat images because the least-
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squares cost function is nonconvex with respect to the
field map image. Neighborhood information is often
incorporated into the reconstruction to avoid erroneous
field map estimates. Motivated by the work of Tsao and
Jiang (13), we propose to restrict the dimension of the
linear subspace in which the field map estimate is
updated. The subspace dimension is gradually
increased to allow for a more accurate field map esti-
mate, but the dimension of the space always remains
less than the number of voxels of the field map image.
Further, the vectors that span the subspace are created
in a way that promotes a spatially smoothly varying
field map.

We first explain the approach conceptually with a
one-dimensional (1D) example for a field map of 256
pixels. At first, strict restrictions are placed on the sub-
space in which the field map update is estimated. Figure

1a shows the one linear vector that spans the first
instance of the restricted subspace. The single constant-
valued vector restricts the field map to assuming only
one value that is equal for all pixels. The field map is
updated in this subspace until a convergence point is
reached. Subsequently, the subspace is enlarged. Figure
1b depicts the three vectors that span this new space.

The field map update at this step will thus be a superpo-
sition of these three vectors. Again, the field map update
is estimated in this subspace until a convergence point
is reached. The same procedure is repeated using the
vectors spanned in Fig. 1c. Further steps continue the
process of updating the field map in subspaces of
increasing dimension until a predefined stopping point

is reached. We defer details regarding the specific imple-
mentation (e.g. step size and stopping point) to the sec-
tion Materials and Methods.

The 1D example extends in a quite straightforward
manner to higher dimensions. In 2D, for instance, a vec-
tor is created via an outer-product of one vector from
each dimension. Referring to the previous examples, the
first subspace in a 2D problem would again restrict the
field map estimate to the same value for each pixel,
whereas the next step would result in a 2D subspace
spanned by 9 (¼32) 2D vectors.

Having presented the conceptual approach, we
now turn to the mathematical details. Equation 3 is
rewritten as

kðtnÞ ¼ FuðDEnÊnððq̂w þ DqwÞ þ ðq̂f þ Dqf Þ � dnÞÞ ½5�

where, for example, r̂w is the current (known) water
image estimate and Dqw represents the error (unknown)
in the estimate. The terms Ên and DEn are defined in a
similar manner as En, but now with ĉp and Dwp respec-
tively. Using the first-order Taylor approximation for Dw
results in

kðtnÞ ¼ FuðDFnÊnððq̂w þ DqwÞ þ ðq̂f þ Dqf Þ � dnÞÞ ½6�

where DFn is a P � P diagonal matrix with 1 þ j2pDwptn
on the pth diagonal. The first-order Taylor approxima-
tion is reasonably accurate for |Dw�tN| = 1/8 or field
map updates of less than 20 Hz. This was generally
found to be the case for the datasets in this work.

Rearranging the known terms from the unknown terms
and discarding D�D terms in a fashion similar to Reeder
et al. (6), we have

kðtnÞ �FuðÊnðq̂w þ q̂f � dnÞÞ
¼ FuðÊnðDqw þ Dqf � dnÞ þ ðDFn � IÞÊnðq̂w þ q̂f � dnÞÞ ½7�

At this point, we rewrite the field map update term,
Dc, such that it is in the restricted subspace. We define
R as the matrix that contains the restricted subspace vec-
tors. Each row of the matrix is one vector from that sub-
space. As an example and with reference to Fig. 1a, the
first instance of R would be a 1 � 256 matrix with each
entry having the same value. The second instance of R,
with reference to Fig. 1b, would be a 3 � 256 matrix.
The first row of R would contain the values of the vector
drawn with the solid line in Fig. 1b. Note that only the
first 128 values of this vector are non-zero. The second
and third rows of R would contain, respectively, the val-
ues of the second and third vectors in Fig. 1b. In each
new instance, R is updated to reflect the current set of
subspace vectors. For a given R, the subspace coeffi-
cients are

Dm ¼ R � Dc ½8�

Using Eq. 8 to rewrite Eq. 7

kðtnÞ �FuðÊnðq̂w þ q̂f � dnÞÞ
¼ FuðÊnðDqw þ Dqf � dnÞ þ DMnÊnðq̂w þ q̂f � dnÞÞ ½9�

where RH is the Hermitian transpose of R and DMn is a
P � P diagonal matrix containing the pth element of
j2p�(RH�Dm)�tn on the pth diagonal. The unknowns are
now Drw, Drf, and Dm. By denoting the left side and
right side of Eq. 9 as r(tn) and x(Drw, Drf, Dm; tn), respec-
tively, we arrive at the expression to estimate the field
map update as well as estimates of the water and fat
error images:

FIG. 1. 1D example to illustrate the vectors that span the re-
stricted subspace in which the field map estimate is updated; one

can imagine taking an inner product of the field map with each
vector to obtain a coefficient in the restricted subspace; further, a
backprojection would map the coefficient to image space. a: One

vector that spans the subspace for the first instance of the field
map update. b: Three vectors that span the subspace for the next

instance of the field map update. c: Seven vectors that span the
subspace in the third instance of the field map update; in this
example, the step size factor is 0.5 as the vector in (a) has a sup-

port size of 256, the vectors in (b) each have a support size of
128, and the vectors in (c) each have a support size of 64; exten-

sions to higher dimensions are made via outer-products of the 1D
vectors.
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min
Drw;Drf ;Dm

XN
n¼1

jjrðtnÞ � xðDrw;Drf ;Dm; tnÞjj22
"

þljW � Drwj1 þ ljW � Drf j1� ½10�

As in IDEAL, the field map update Dc ¼ RH�Dm is
added to the current field map estimate while the other
estimates are discarded. Again, for simplicity, the l and
W used in Eq. 10 is the same as used in Eq. 4.

Summary of Estimation Procedure

Figure 2 illustrates the proposed procedure, which is
summarized below.

1. Initialize field map estimate to 0 and R to contain one
constant-valued vector.

2. Estimate water and fat images (Eq. 4).
3. Update the field map estimate within R (Eq. 10).
4. IF mean of the absolute field map update is small (e.g.

<1 Hz)

� Go to Step 5;
ELSE
� Go to Step 2;

5. IF predefined maximum subspace size is reached

� Done;
ELSE
� Update R to span a larger subspace;
� Go to Step 2.

MATERIALS AND METHODS

Data Collection

Experiments were conducted on a 3-T Signa EXCITE
HDx system (GE Healthcare, Waukesha, WI). Fully
sampled data were collected with volunteer consent
using a GE-investigational IDEAL 3D spoiled-gradient-
echo sequence at three TE points (TE1 ¼ 2.184 ms, DTE
¼ 0.794 ms) with one echo per TR, BW ¼ 125 kHz, a 256
� 256 sampling matrix, and a flip angle of 5�.

Data were first acquired from a water–fat phantom
using a single-channel birdcage coil. An oblique coronal
slab through the water–fat interface captured the spec-
trum from entirely water to entirely fat. The field-of-view
(FOV) was 15 cm and slice thickness (Dz) was 6 mm.
Data were also acquired from the ankle (FOV ¼ 24 cm
and Dz ¼ 5 mm) and from the knee (FOV ¼ 18 cm and
Dz ¼ 5 mm) with the single-channel coil. Using an eight-
channel knee transmit/receiver array, data were collected
from the knee (FOV ¼ 18 cm and Dz ¼ 5 mm) and an
eight-channel torso receiver array was used to collect a
liver dataset (FOV ¼ 34 cm and Dz ¼ 5 mm).

Estimation

The fully sampled data were retrospectively down-
sampled to simulate an accelerated acquisition. Down-
sampling was done in a 256 � 3 (number of phase enco-
des � number of TEs) space. This accelerated
acquisition scheme could be achieved prospectively by
blipping the phase encoding gradient between subse-
quent TEs so that a different phase encoding line is

acquired at each TE point. This would result in an
undersampled ky - TE space. We used a variable-density
sampling scheme that minimized the maximum sidelobe
of the point-spread function in an effort to suppress ali-
asing interference (21). The central 1/8th k-space phase-
encode lines were sampled at all TEs. The Daubechies-8
wavelet transform was used as the sparsifying basis for
the water and fat images. Previous experiments had
shown that this transform provided an accurate approxi-
mation of water and fat images from only 15–25% of
the highest magnitude coefficients. We used the six-
peak fat model proposed by Yu et al. (23). Last, in Eqs.
4 and 10, the parameter l was set to 2 for 2�-accelera-
tion and 3 for 2.5�-acceleration for every reconstruction
presented in this work. These values were determined
empirically by comparing the reconstruction quality of
the water and fat images with fully sampled reference
images.

The subspace dimension for the field map update was
gradually increased such that the support size of each
1D vector at step m was 3/4th the size of the support in
step m - 1. For example, at step 1, there was one con-
stant-valued vector with support size of 256. At the next
step, each vector had a support size of 192 (¼256 �
0.75), then 144 (¼192 � 0.75), and so on. Noninteger
results were rounded to the nearest integer. The number
of vectors that spanned a restricted subspace was calcu-
lated as follows. If the support size S of each subspace
vector was a power of 2, then the number of vectors
was

512

S
� 1

For example, if S ¼ 256, then the number of vectors is
one, as is the case in Fig. 1a. If S ¼ 128, then the number
of vectors is three as in Fig. 1b. For support sizes that
were not a power of 2, the number of vectors was calcu-
lated as the rounded average of the number of vectors
from the two closest powers of 2. For example, for a sup-
port size of 144, the number of vectors in the corre-
sponding subspace was two, which is the average of one

FIG. 2. Flowchart of the proposed estimation process; the field

map is initialized to zero and the restricted subspace R is initial-
ized as in Fig. 1a; the water and fat images are estimated with the

fixed field map; the field map is then updated in the restricted
subspace R; this process is continued until the field map update
is small; R is then eased to span a larger dimension and the entire

process is repeated until a predefined stopping point is reached.

Accelerated Water–Fat Using Restricted Field Map and CS 653



and three that result from a S ¼ 256 and S ¼ 128, respec-
tively. The number of vectors was calculated in this
manner to ensure overlapping supports. As described
earlier, these vectors were created in 1D and expanded
to 2D via outer-products.

The iterative estimation procedure within one sub-
space continued until the mean absolute value of the
current field map update was less than 1 Hz. Finally, the
entire estimation routine continued until the 1D vector
support size was less than 1/16th of the image dimen-
sion. For a 256 � 256 image, the stopping point occurred
when the support size was less than 16 pixels.

For multicoil acquisitions, each coil was processed
separately. The individual field maps were then com-
bined by

cp
c ¼

PA
a¼1 jar̂pw j þ jar̂pf j

� �2

�acp

PB
b¼1 jbr̂pw j þ jbr̂pf j

� �2 ½11�

where A ¼ B ¼ the number of coils and a left superscript
denotes the coil element. Water and fat images were
then re-estimated for each coil using the combined field
map. The results were combined using root-sum-of-
squares.

The approach was tested at 2� and 2.5� on a water–
fat phantom, ankle, knee, and liver. Results were com-
pared against a nonaccelerated voxel-independent IDEAL
(IDEAL-VI) method (6) and/or an in-house implementa-
tion of IDEAL with RG (IDEAL-RG), based on the work
of Yu et al. (9). All processing was done offline in Mat-
lab (The Mathworks, Inc, Natick, MA) using a conjugate-
gradient implementation (21) and Wavelab for the wave-
let transform (27).

RESULTS

Figure 3 displays 256 � 256 water, fat, and field map
images that were estimated using IDEAL-RG and the pro-
posed method at 2�- and 2.5�-acceleration as well as a
profile of signal intensity through a cross-section of the
fat image. The proposed method accurately separates the
water and fat signals at both acceleration rates. Although
the field map image that is estimated using the proposed
method appears smoother than that from IDEAL-RG, the
estimated water and fat intensities are mostly unaffected
as shown in the profile plot.

Figure 4 displays water, fat, and field map image esti-
mates for a sagittal slice of the ankle using IDEAL-VI,
IDEAL-RG, and the proposed method at 2�- and 2.5�-

FIG. 3. Image estimates from a 256 �
256 water–fat phantom using a single-
channel birdcage coil; estimates using
the proposed method at 2� and 2.5�
are visually similar to those from 1�
RG; the plot at the bottom shows a pro-

file through the fat image taken at the
black dashed line; field map colorbar is
in Hertz (Hz). [Color figure can be

viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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acceleration. The region outlined in the IDEAL-VI field
map estimate illustrates an area where the field map was
incorrectly estimated, causing inaccurate water–fat sepa-
ration. Both IDEAL-RG and the proposed approach at
2�- and 2.5�-acceleration resolve the field map ambigu-
ity, resulting in correct water–fat separation.

Figure 5 displays the estimates for a sagittal slice of
the knee using IDEAL-RG and the proposed approach at
2�- and 2.5�-acceleration. Estimates from IDEAL-VI are
not shown as they were nearly identical to those from
IDEAL-RG. Figures 6 and 7, respectively, display the
image estimates for a multicoil acquisition from an axial
slice of the knee and from an axial slice of the liver. For
the liver image, the data were acquired in one 38 s
breath-hold using an eight-channel torso array. The pro-
posed method at both acceleration rates accurately sepa-
rates the water and fat images with no signal swaps. The
water and fat image estimates from the proposed method
at 2�-acceleration appear nearly identical to the corre-
sponding fully sampled IDEAL-RG estimates, while there
is only a slight hint of blurring in the image estimates
from the proposed method at 2.5�-acceleration. The total
computational time for reconstructing the water, fat, and

field map images was � 20 min (24 CPUs, 2.93 GHz, and
48 GB RAM).

DISCUSSION

The field map estimation approach that we have pro-
posed avoids the local minima solutions that plague VI
methods. This is most evident in the ankle dataset. Fig-
ure 8a shows the evolution of the field map estimate for
a voxel that was incorrectly estimated using IDEAL-VI
(the voxel is denoted by the black dot in Fig. 8b,c). With
an initialization of 0 Hz, a descent-based VI method con-
verges to -52.58 Hz, which is denoted by the red line in
Fig. 8a. Using the proposed method, the field map is cor-
rectly estimated for that voxel. In fact, it appears that as
early as the second instance of the restricted subspace
(i.e. 1D support size ¼ 192), the field map estimate is
quite close to its true value. This may suggest that larger
steps between the 1D support size could be taken, say
with a step size factor of 0.5; however, we have observed
much slower convergence in other datasets, which
necessitated the current step size factor of 0.75. Figure
8b,c shows the field map image estimate at two different

FIG. 4. Image estimates from a
256 � 256 ankle using a single-chan-

nel birdcage coil; inaccurate field
map estimates in the 1� VI method
cause water–fat swaps (see outlined

regions in VI images); estimates using
the proposed method at 2� and 2.5�
avoid local minima field map solu-
tions resulting in proper water–fat
separation; field map colorbar is in

Hertz (Hz). [Color figure can be
viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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points in the reconstruction process. Even in Fig. 8b, the
field map estimate is quite close to the true value.

Generally, the field map estimate from the proposed
method appeared smoother than that from IDEAL-RG.
This is probably a direct result of using restricted sub-
spaces for the field map updates. By further increasing
the dimension of the subspace, we expect the field map
estimates to approach those seen from IDEAL-RG. That
said, the quality of the water–fat separation does not
seem to be adversely affected by the stopping criterion
that we chose in this work. This is supported by the pro-
file plot of the fat image from the water–fat phantom in
Fig. 3.

Updating the field map in a restricted subspace signifi-
cantly reduces the number of coefficients that must be
estimated. This becomes extremely convenient when
estimating the field map from undersampled measure-
ments. For example, the estimation of the field map
image from the ankle was finally computed with 529
(¼232) vectors in R. This corresponds to using 1D vectors
with a support size of 20 pixels. With an image size of
256 � 256, this represents a ‘‘compression-ratio" of 0.8%.
In 3D imaging at 2563 pixels, the number of coefficients
to calculate would be 12,167 (¼233), which is a ratio of
0.07%. By restricting the field map estimate to particular
coefficients, the proposed method may achieve a greater
acceleration than those approaches that impose l1-regula-
rization on the field map (22). This is because l1-regulari-

zation methods must pay a penalty of additional meas-
urements as the locations of significant coefficients are
unknown before estimation. By contrast, the proposed
method specifies which coefficients to estimate (i.e.
those coefficients in the restricted subspace).

While the restricted subspace approach provides con-
venience in estimation, it limits the types of field maps
that one should hope to recover. Although off-resonance
due to B0-field inhomogeneity tends to be smoothly vary-
ing, susceptibility-induced variations may cause sharp
changes in the local field map, which would violate our
assumption of smoothness. These variations are espe-
cially pronounced at air–tissue interfaces, which may
occur in abdominal imaging. Another limitation in this
work is the lack of compensation for R2* effects. This
becomes especially critical in quantitative applications
such as measuring hepatic fat fraction where high iron
content would significantly attenuate the signal due to
its short T2* value. The proposed model allows for the
inclusion of this factor but care must be taken in estimat-
ing its value because, as with the field map, the least-
squares cost function is nonconvex with respect to this
parameter. Incorporation of T2* into the proposed model
is under investigation.

A few user-defined design choices were necessary in
this method. As with most other applications of CS, the
regularization parameter l must be set. This parameter
was empirically determined, but was kept constant for

FIG. 5. Image estimates from a 256
� 256 knee using a single-channel

birdcage coil; estimates at both 2�
and 2.5� from the proposed method
are very similar to those from 1� RG;

the white arrows in the figure highlight
areas of slight discrepancy between

estimates from RG and the proposed
method; field map colorbar is in Hertz
(Hz). [Color figure can be viewed in

the online issue, which is available at
wileyonlinelibrary.com.]
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all 256 � 256 image reconstructions at a given accelera-
tion rate. How this parameter would change as a func-
tion of image size, anatomy, and acceleration rate is an
open question in this work as well as any other that uses
CS reconstruction. The step size factor for updating the
field map subspace was also empirically determined.
The 0.75 factor worked for all datasets presented in this

article although it was overly conservative for some such
as the water–fat phantom and the knee.

The design of subspace vectors was motivated mostly
by simplicity. Field maps are generally not piecewise-
linear as would be reflected by these pyramidal vectors.
However, as the support size of each 1D vector
decreases, the resulting estimate more closely

FIG. 6. Image estimates from a

256 � 256 knee using an eight-
channel knee coil; estimates at
2� and 2.5� using the proposed

method are very similar to the
1� RG results; field map color-

bar is in Hertz (Hz). [Color figure
can be viewed in the online
issue, which is available at

wileyonlinelibrary.com.]

FIG. 7. Image estimates from a
256 � 256 liver using an eight-

channel torso array; estimates
from the 2� and 2.5� proposed

method are very similar to the
1� RG estimates; field map col-
orbar is in Hertz (Hz). [Color fig-

ure can be viewed in the online
issue, which is available at

wileyonlinelibrary.com.]
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approximates the smooth variations of the field map.
Subspace vectors that more accurately resemble the
expected field map may be used to decrease the step size
factor and provide a more accurate estimation. One pos-
sibility for learning these subspace vectors would be to
first develop a set of characteristics for the sequence of
spaces in which the field map will be updated. These
characteristics should include elements as promoting a
smoothly varying field map and preventing local minima
field map solutions. The vectors that span each of these
subspaces can then be learnt such that they provide a
compact representation of the space.

Last, this work does not rely on any coil sensitivity in-
formation for a reduction of acquisition time. Parallel
imaging techniques use complementary knowledge to
that used in this work; thus, we do expect further accel-
eration by incorporating sensitivity information into the
proposed accelerated water–fat imaging framework. This
remains an item of future work.

CONCLUSIONS

In conclusion, we have presented a new approach for
accelerated water–fat imaging. By modeling the images
rather than single pixels, we were able to exploit pre-
sumed knowledge of the water, fat, and field map images
to estimate their values from undersampled k-space data.
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