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Accelerated 3D MERGE Carotid Imaging Using
Compressed Sensing With a Hidden Markov
Tree Model
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Purpose: To determine the potential for accelerated 3D
carotid magnetic resonance imaging (MRI) using wavelet
based compressed sensing (CS) with a hidden Markov
tree (HMT) model.

Materials and Methods: We retrospectively applied HMT
model-based CS and conventional CS to 3D carotid MRI
data with 0.7 mm isotropic resolution from six subjects
with known carotid stenosis (12 carotids). We applied a
wavelet-tree model learned from a training database of ca-
rotid images to improve CS reconstruction. Quantitative
endpoints such as lumen area, wall area, mean and maxi-
mum wall thickness, plaque calcification, and necrotic
core area were measured and compared using Bland–
Altman analysis along with image quality.

Results: Rate-4.5 acceleration with HMT model-based CS
provided image quality comparable to that of rate-3 accel-
eration with conventional CS and fully sampled reference
reconstructions. Morphological measurements made on
rate-4.5 HMT model-based CS reconstructions were in
good agreement with measurements made on fully
sampled reference images. There was no significant bias
or correlation between mean and difference of measure-
ments when comparing rate 4.5 HMT model-based CS
with fully sampled reference images.

Conclusion: HMT model-based CS can potentially be used
to accelerate clinical carotid MRI by a factor of 4.5 without
impacting diagnostic quality or quantitative endpoints.
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ATHEROSCLEROSIS affects more than 18 million
Americans and is the underlying process leading to
heart attack and stroke. More specifically, athero-
sclerotic disease of the carotid arteries is estimated to
cause 40% of stroke-producing thrombi. Magnetic res-
onance imaging (MRI) has recently proven valuable in
the diagnosis and evaluation of atherosclerosis, par-
ticularly in large vessels (eg, carotids, aorta). MRI
offers several unique capabilities, such as 1) soft
tissue classification, which is useful for detecting
high-risk plaque components, and 2) lack of ionizing
radiation, making it feasible for routine screening and
for longitudinal studies. High-resolution black-blood
MRI has been used for quantifying carotid plaque
morphology (1–3) and optimized multicontrast pulse
sequences have been used to delineate the vessel wall
and characterize plaque components (4). Recently,
noninvasive MRI measurements of plaque burden
have been used as quantitative endpoints in clinical
trials related to atherosclerosis (5).

High signal-to-noise ratio (SNR) and high spatial re-
solution are important for quantitative measurements
from plaque imaging. Several 2D and 3D imaging
techniques have been successfully applied for carotid
plaque imaging. The typical carotid protocol acquires
multiple 2D multislice image sets (proton-density, T1
and T2-weighted fast spin echo, and time of flight)
across a 2–3 cm segment spanning the carotid bifur-
cation (4) and requires about 30 minutes of scan
time. Additional acceleration of imaging can be used
to improve SNR or resolution of carotid MR sequences
and reduce motion artifacts. Scan time reduction can
be achieved by interleaving multiple image slices
(6–9), employing inner volume (IV) imaging (10), utiliz-
ing parallel imaging (11,12), or some combination of
these. Limitations exist for each of these methods of
reducing scan time. Techniques that interleave multi-
ple slices together are susceptible to artifacts from
incomplete blood suppression (13,14), whereas both
IV and parallel imaging sacrifice image SNR. Such
techniques may also be subject to limitations by gra-
dient performance, RF coil geometry, and may not be
applicable to all pulse sequences. Additional comple-
mentary acceleration methods that are not subject to
such limitations are needed.
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Compressed sensing (CS) is a relatively new tech-
nique that allows for acceleration and denoising
(15,16), and is independent of the native MR techni-
ques. CS theory indicates that if the image is com-
pressible in a known sparsifying domain, then with
only O(Klog(N/K)) measurements, where K is the spar-
sity level and N is the size of the image, a sparsity-
seeking algorithm can almost exactly recover the true
image. Several recent studies have demonstrated the
feasibility of CS in MRI (17–19). The application of CS
to carotid imaging has yielded only modest (�3) accel-
eration rates thus far (20), and is more fully explored
in this work.

We demonstrate high acceleration by adapting the
model-based CS framework developed by Baraniuk et
al (21). The proposed method leverages an anatomy-
specific signal model that is trained on a carotid
image database. A modified recovery algorithm is
used to encourage sparse solutions that comply with
the learned model while maintaining robustness of re-
covery. For instance, the wavelet coefficients naturally
organize into a tree structure, and large coefficients of
natural images will cluster along the branches of this
tree (22,23). Figure 1 illustrates this tree structure in
the wavelet expansion of a 2D axial carotid image.

MATERIALS AND METHODS

Compressed Sensing MRI

CS allows for accelerated MRI by constraining the
image to conform to a known model. Classically, the
MR signal can be expressed as:

yr ¼
Z

m rð Þci rð Þe�j2pk tð Þ�rdr ½1�

where yi(t) represents the data acquired from the ith

coil, m(r) is the underlying image and ci(r) is the
receive sensitivity of the ith coil, r is spatial position,
and k(t) is spatial frequency. In discrete form, the
signal equation is:

yi ¼ FCim ½2�

where yi is a vector with data acquired from the ith

coil, F is the Fourier encoding matrix, Ci is the coil
sensitivity (diagonal) matrix, and m is the discretized
image. Given N basis vectors ci, we can represent
every possible image m e RN using N coefficients xi. If
we stack the vectors ci into an N � N matrix C, then
m can be expressed as:

m ¼ Cx ½3�

In this sense, the image is said to be K-sparse if K < N
coefficients out of N are nonzero. MR images, like most
natural images, are likely to be compressible (many
near-zero coefficients) but not strictly sparse. Com-
pressible images are well approximated by K-sparse
images. CS theory indicates that if the image is com-
pressible by a known transform and if certain condi-
tions, described below, are satisfied, then O(Klog(N/K))
measurements are sufficient to recover the true image

with very high accuracy and probability (15). Assuming
the MR image is compressible, the discrete MR signal
equation (Eq. [2]) can be rewritten as:

yi ¼ AMx ½4�

where

AM ¼ FMCiC ½5�

represents the composite sensing matrix (of size M �
N, where M�N) that maps the sparse transform coeffi-
cients to the acquired data. The CS recovery theorems
hold provided that AM satisfies the ‘‘Restricted Isome-
try Property’’ (RIP) (15) in addition to the sparsity/
compressibility requirement. If these criteria are satis-
fied then the underlying image can be recovered by
solving the following optimization problem:

arg minx ljjx jj1 þ jjy� AMx jj2 ½6�

where l is a parameter that balances data consistency
with transform sparsity. Data from each coil can also
be reconstructed individually and combined after CS
recovery.

Model-Based CS

Conventional CS does not make any assumptions
regarding the underlying support (location) of the
sparse coefficients in order to guarantee recovery for a
broad variety of natural as well as artificial signals. In
reality these assumptions are too general and lead to
the requirement of unnecessarily inhibitive properties
like the RIP. The correlations and dependencies that
exist among sparse coefficient locations and values
for most natural images can be exploited by using a
signal model. A signal model MK essentially restricts

Figure 1. Illustration of the tree structure utilized in HMT
model-based CS. (a) 2D axial image at the carotid bifurca-
tion, and (b) its Daubechies-6 wavelet decomposition. The
most significant coefficients fall along a connected tree,
marked by yellow lines, with large coefficients shown in red.
[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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the K-sparse signal x that lives in the union of arbi-
trary K-dimensional canonical subspaces to a much
smaller subset, ie, MK subset of (NK). This provides a
structured sparsity model that can be eventually used
to reduce the dimensionality of the sparse search
space.

Correlations among sparse coefficient locations and
values enable us to learn statistics of significant coef-
ficients from a training database. Then these statistics
are incorporated in the recovery algorithm as a prior
to effectively reduce the dimensionality of the search
space without sacrificing algorithm robustness. If an
appropriate model is utilized, then the required num-
ber of measurements reduces from O(Klog(N/K)) to
O(K).

Wavelet Tree Model

Wavelet transforms have been used for generating
sparse representations in a wide variety of applica-
tions including image compression and CS-MRI (21).
The wavelet transform decomposes an image into
coarse approximation coefficients, essentially a low-
resolution image, and detail coefficients, which are
highly sparse. This corresponds to a one-scale decom-
position. The approximation coefficients can further
be recursively decomposed with subsequent wavelet
transforms at coarse scales, forming a tree structure.
For natural images, significant wavelet coefficients do
not occur at arbitrary locations but exhibit a charac-
teristic structure (22,23). If these statistics of signifi-
cant coefficients can be learned from a training data-
base then the resulting signal model can be
incorporated at the reconstruction stage. The CS re-
covery algorithms can be modified to encourage solu-
tions that comport with the learned signal model. This
provides an opportunity to flexibly trade off the search
complexity during recovery with a higher acceleration
rate during measurement.

In standard wavelet representation of images, nested
sets of coefficients are generated at every scale of the
decomposition. All coefficients at every scale (except
the last) will have 4 children (in 2D image) or 8 children
(in 3D image) coefficients at the next finer scale. Simi-
larly, all children coefficients will have a parent at the
previous coarser scale (except the first). Coefficient
magnitudes usually persist through scales due to the
analysis properties of wavelet basis functions. The
presence of an edge in the original image will manifest
as a large wavelet coefficient, while smooth regions will
generally result in small wavelet coefficients. Edges
will usually create a chain of large coefficients linked
across scales. This phenomenon is known in the litera-
ture as the persistence property. Also, the magnitudes
of wavelet coefficients exponentially decay at finer
scales. This causes the significant wavelet coefficients
of piecewise smooth signals to concentrate within a
connected subtree of the wavelet tree.

In practice, coefficients of most real images will not
form perfectly connected trees (23). There are primar-
ily three reasons for this break in structure. 1) The
expected sparsity of wavelet coefficients decreases at
coarser scales, since carotid MR images are superpo-

sitions of large smooth regions with contour singular-
ities of varying sizes. 2) Since wavelet bases are fre-
quency band filters, its coefficients close to the edges
oscillate around the zero value. 3) The linearity of the
wavelet transform may cause two or more edges to
cancel out coefficients at coarser scales due to de-
structive interference. In other words, the persistence
of the wavelets across scale is weaker at coarser
scales. This yields a nonconnected set of meaningful
wavelet coefficients. Hence, we must develop a ca-
rotid-specific model that allows for such variations
and embodies this statistical structure. These proper-
ties in spite of problems of loose connectivity of the
tree induce a joint statistical structure that is still far
stronger than simple sparsity or compressibility
(21,23).

Hidden Markov Tree (HMT) Model

HMT models succinctly and accurately represent this
joint statistical structure. The key properties of wave-
lets that include persistence and exponential decay
across scales are captured by a tree-based Markov
model that correlates the states of parent and chil-
dren coefficients. HMT modeling has been used suc-
cessfully to improve performance of denoising (22),
classification, and even reconstruction from under-
sampled data (23). In this work we closely follow the
framework developed in References 22 and 23 and
apply it to MR image reconstruction. HMT models the
non-Gaussian probability density function of each
wavelet coefficient as a mixture of two hidden binary
states. The two states are used to determine whether
a particular coefficient is large or small in magnitude.

A two-component mixture of generalized Gaussians
can be used to stochastically model the distribution of
sparse coefficients with large and small magnitudes.
In previous works (22,23) a two-component mixture of
Gaussians was sufficient to model signal statistics.
However, we observed that a mixture of generalized
Gaussians provide a better statistical fit for wavelet
coefficients of 3D MERGE carotid images (Fig. 2).
Since the MR images are generally complex, we must
model statistics of real and imaginary component sep-
arately. The generalized Gaussian reduces to the
standard Gaussian and Laplacian (24) distribution in
special cases. The component corresponding to the
small state has a relatively small variance, capturing
the peakiness around zero, while the component cor-
responding to the large state has a relatively large
variance, capturing the heavy tails.

The persistence of wavelet coefficient magnitudes
across scale is modeled by linking these hidden states
across scale in a Markov tree. A state transition ma-
trix for each link quantifies statistically the degree of
persistence of large or small coefficients. The other
properties of loosely connected wavelet trees can be
also incorporated in the HMT model. The decay in
coefficient magnitude across scales will imply that
variances associated with generalized Gaussian mix-
ture model will decay exponentially as the scale
becomes finer (22,23). The weakening in persistence
across scales can be modeled by appropriately
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changing the state transition weights for finer scales.
The Markov model is then completely determined by
the set of state transition weights for linking the dif-
ferent coefficients at different wavelet scales.

If fully sampled training images are available then
maximum likelihood estimates of the mixture varian-
ces and transition matrices can be calculated using
the Expectation-Maximization (EM) algorithm (25).
These parameter estimates yield a good approxima-
tion of the joint density function of the wavelet coeffi-
cients, and hence the actual images. Two sets of HMT
parameter estimates are learned, one for the real com-
ponent and the other for the imaginary component.
With the knowledge of carotid-specific HMT parame-
ters and hidden state probabilities at the coarsest
wavelet scale, we can generate a distribution for any
coefficient’s hidden state by the Viterbi algorithm (26).

The iterative reweighted L1 minimization (IRWL1)
algorithm (27) enables a flexible implementation that
allows for specific signal penalizations while retaining
the favorable computational complexity of L1 norm
minimizations. The IRWL1 algorithm solves a series of
L1 minimization problems with an additional weight-
ing matrix, Wk, which is updated after each minimiza-
tion (Eq. [7]). In the traditional IRWL1 algorithm these
weights are inversely proportional to sparse coefficient
magnitude. Here we utilize a weight rule proposed
previously (23) for the IRWL1 algorithm that integra-
tes the HMT model to enforce the wavelet coefficient
structure during CS reconstruction. Weights are
applied separately to real and imaginary components.

x̂k ¼ arg minx ljjW kx jj1 þ jjy� AMx jj2 ½7�

The weighting can be summarized as: for each
wavelet coefficient in the current estimate we obtain
the probability that the coefficient’s hidden state is
large; in the next iteration, we apply to that coefficient
a weight that is inversely proportional to that proba-
bility. The goal of this weighting scheme is to penalize
coefficients with large magnitudes that have low likeli-
hood of being generated by a wavelet sparse signal;
these coefficients are often the largest contributors to
the reconstruction error.

The first step of the proposed algorithm consists of
an initial training stage in which an EM algorithm is
used to estimate the values of the parameters for a
representative signal; additionally, the solution for the
standard L1 minimization is obtained. Subsequently,
we proceed iteratively with two alternating steps: a
weight update step in which the Viterbi algorithm for
state probability calculations is executed for the previ-
ous solution, and a reconstruction step in which the
obtained weights are used in Eq. [7] to obtain an
updated solution. The convergence criterion for this
algorithm is the same as for the IRWL1 algorithm.

Data Acquisition

All data were collected on a Philips Achieva 3T scan-
ner with bilateral four-channel carotid phased array
coils. Data were collected from six subjects with 16%–
79% carotid stenosis by ultrasound. Informed consent
was obtained prior to scanning under a protocol
approved by our Institutional Review Boards. Subjects
were asked to avoid swallowing during the scan, and
scans were repeated if they were unable to do so. 3D
Motion Sensitized Driven Equilibrium prepared Rapid
Gradient Echo (3D-MERGE) (28) images were
acquired in the coronal plane with scan parameters
that provided coverage of the full extent of carotid ar-
tery visible to the coil. One hundred coronal slices
with isotropic resolution of 0.7 � 0.7 � 0.7 mm3 (zero
padded to 0.35 � 0.35 � 0.35 mm3) covering a 25 �
16 cm2 field of view (FOV) were acquired in a 2-mi-
nute scan. Other sequence parameters were TR 10
msec, TE 5 msec, flip angle 6�, Turbo factor 30,
MSDE first gradient moment 1500 mTms2/m.

Image Reconstruction

Data were retrospectively undersampled using a
region of full-sampling and a region of variable den-
sity random undersampling. The sampling pattern for
rate-4.5 is shown in Fig. 3. Acquired data from all
subjects were randomly subdivided in two disjoints
sets, one for training and the other for evaluation.
This process was repeated for each dataset. CS was

Figure 2. (a) Log-histogram and (b) histogram of wavelet coefficients in one subband of a representative carotid image. The
red line is a mixture of two-component Gaussians fitted to the data and the blue line is the approximation from a mixture of
two-component generalized Gaussians. The generalized Gaussian mixture provides a better fit than Gaussian mixture.
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applied to each 2D slice oriented perpendicular to the
readout direction (ie, along the two phase-encoding
directions, yz-plane). Two sets of images were recon-
structed from each undersampled dataset, one using
HMT model-based CS (21) and one using conventional
L1 minimization (19). Reference images were also
reconstructed from the fully sampled data using con-
ventional Fourier reconstruction. Greedy approaches
were not used because they require more data sam-
ples for equivalent image quality (29). Daubechies-6
wavelets (3-scale decomposition) were used to sparsify
the images. The CS regularization parameters were

chosen empirically. Computation time for training
model parameters was 114 seconds using MatLab
(MathWorks, Natick, MA) on a Linux workstation
equipped with two 6-core 2.93 GHz CPUs and 48 GB
of RAM. Reconstruction time for the proposed HMT
model-based CS was 1900 seconds and for the stand-
ard L1 minimization was 392 seconds.

Image Analysis

Coronal images with isotropic resolution were refor-
matted to the axial plane with a 2-mm slice thickness

Figure 3. (a) k-space sampling density, (b) ky-kz phase encode locations for 4.5� undersampling. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Comparison of L1 minimization and HMT model-based CS reconstructions. a: Fully sampled reference. b: NRMSE
for CS reconstructions as a function of acceleration rate, averaged across all subjects, for an ROI containing the carotid
bifurcation. c: HMT model-based CS reconstructions. d: L1 minimization reconstructions. e: Absolute difference between the
HMT model-based CS and fully sampled reference. f: Absolute difference between the L1 minimization reconstructions and
fully sampled reference. The arrow indicates severe artifacts in the L1 minimization difference image as compared to the HMT
model-based CS difference image. All images are axial reformats. Difference images are scaled to emphasize results.

1198 Makhijani et al.



for qualitative and quantitative measurements. Image
quality was visually assessed with respect to the pres-
ence of artifacts and aliasing, the conspicuity of
lumen and outer wall boundaries, and conspicuity of
plaque components and rated on a 4-point scale (30).
The 12 carotids were randomized and stripped of
patient information prior to evaluation. A radiologist
viewed the reference images and images reconstructed
using HMT model-based CS side-by-side on standard
clinical picture archiving and communication system
(PACS) and assigned image quality scores on the 4-
point scale. Lumen and outer wall boundaries were
drawn using semiautomated plaque measurement
software (31) on all slices. Morphological measure-
ments were derived from the contours and compared
between HMT model-based CS and reference images.
Plaque burden measurements were averaged per ar-
tery before statistical comparison and were compared
using paired Student’s t-test. Plaque burden measure-
ments were also compared using Bland–Altman plots.
A 95% confidence interval was used for all statistical
tests and P < 0.05 was considered significant.

RESULTS

Figure 4 compares HMT model-based CS with stand-
ard L1 minimization reconstructions. The images from
L1 minimization are corrupted with both aliasing and
wavelet basis artifacts at an acceleration rate >3. At
rate-4 acceleration the images from the standard
approach shows significant aliasing artifacts along
the undersampling direction while the HMT model-
based CS reconstruction does not show any substan-

tive artifact. The images reconstructed using HMT
model-based CS suffer aliasing artifacts at rate-5. The
normalized root mean square error (NRMSE) plots
correspond to error computed only in the region cov-
ering the carotid bifurcation across all 12 carotids.
HMT model-based CS reconstructions consistently
yield a lower NRMSE at all acceleration rates.

Figure 5 shows reformatted sagittal and axial slices
from five subjects. Vessel wall images were visualized
well in the sagittal plane. Axial reformats clearly depict
the presence of plaque and show small lesion compo-
nents such as calcifications. The image reconstructed
from the proposed method at 4.5-fold undersampling
is almost identical to the fully sampled reference.

The average qualitative score for reference images
was 2.1 6 0.57 while for HMT model-based CS images
was 2.3 6 0.67. Morphological measurements are sum-
marized in Table 1. Bland–Altman plots (Fig. 6) showed
no significant bias or correlation between mean and dif-
ference of measurements. The absence of bias in plaque
burden measurements (Table 1; Fig. 6) was confirmed
by a paired t-test. Figure 7 shows the correlation of pla-
que burden measurements between reference and HMT
model-based CS reconstructions. There was no signifi-
cant correlation between mean values and mean differ-
ences of any plaque burden measurement for both HMT
model-based CS and fully sampled reference images.

DISCUSSION

We have demonstrated the feasibility of accelerated
3D MERGE carotid MRI using HMT model-based CS.
This method exploits correlations and dependencies

Figure 5. Representative sagittal and axial images from five carotid arteries included in this study (out of 12). Atherosclerotic
plaques are marked with white arrows. a,c: Fully sampled reference. b,d: HMT model-based CS with data undersampled by a
factor of 4.5. The HMT model-based CS reconstructions have slightly lower noise level than the reference images (*), and
show slight blurring of the vessel wall (dashed arrow).

Table 1

Paired Differences Between Plaque Morphologic Measurements Made on Images Reconstructed Using HMT Model-Based CS (4.5x) and

Full Sampling (1x)

HMT CS (4.5x) Reference (1x) Difference P-value

Lumen area (mm2) 19.16 6 20.81 18.98 6 20.54 0.17 6 0.45 0.25

Wall area (mm2) 15.27 6 10.76 15.54 6 10.62 -0.27 6 1.47 0.56

Mean wall thickness (mm) 0.86 6 0.26 0.87 6 0.25 -0.035 6 0.096 0.27

Maximum wall thickness (mm) 1.37 6 0.49 1.41 6 0.51 -0.016 6 0.030 0.12

Necrotic core area (mm2) 0.44 6 0.75 0.30 6 0.57 -0.016 6 0.042 0.24

Calcification area (mm2) 0.48 6 0.34 0.46 6 0.36 0.13 6 0.27 0.16
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among transform domain coefficients in addition to
the basic sparsity and compressibility required in CS.
Rate-4.5 acceleration was achieved without any signif-
icant degradation in image quality or fidelity of the
most informative quantitative endpoints. In addition,
this work demonstrates that delineation of anatomic
features that are routinely evaluated in carotid MR
scans is maintained in HMT model-based CS
reconstructions.

The proposed methodology is general and can be
used for all forms of vessel wall imaging (VWI). VWI of
thoracic aorta and peripheral arteries also yield a sim-

ilar challenge of distinguishing sharp features embed-
ded in a dull or suppressed background. However, the
number of fully sampled images required for model
parameter estimation and the sampling densities will
need to be tuned for the different anatomies.

Recently, several hybrid methods have been pro-
posed for combining parallel imaging and CS. HMT
model-based CS does not utilize coil correlations and
parallel imaging theory. The proposed method can be
used to replace the standard L1 minimization step in
these hybrid algorithms, or multicoil reconstruction
can be directly incorporated in the proposed

Figure 6. Bland–Altman plots compar-
ing morphological measurements
between HMT model-based CS recon-
struction and fully sampled reference.
Bold and dashed lines correspond to
mean difference and limits of agree-
ment, respectively. LA, lumen area; WA,
wall area; MWT, mean wall thickness;
MaxWT, maximum wall thickness.

Figure 7. Correlation of lumen area
(LA), wall area (WA), mean wall thick-
ness (MWT) and max wall thickness
(MaxWT) between reference and HMT
model-based CS reconstruction. Solid
and dashed lines correspond to linear
regression line and 95% confidence
intervals, respectively.
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algorithm. However, the sampling requirements for CS
and parallel imaging are quite different and a new
sampling density scheme will be required to maxi-
mally exploit the combination of CS and parallel imag-
ing-based acceleration.

The computational complexity of HMT model-based
CS is greater than standard L1 minimization, since
the proposed method solves a series of L1 minimiza-
tion problems. We observed that the proposed method
requires approximately 5 to 10 additional L1 minimi-
zation steps. The model parameters can be estimated
efficiently using the EM algorithm and do not add sig-
nificant computation cost to the reconstruction.

Reconstruction stability is impacted by fidelity of
the model to the data. In this work, initial parameter
training was done using the EM algorithm, which is
guaranteed to converge only to a local minimum.
Nevertheless, we obtained reasonable estimates as
long as the training data were not excessively noisy.
We also found that initializing the EM algorithm with
K-Means improved its convergence rate. The strength
of the model mismatch penalty is controlled by a reg-
ularization parameter. We set the penalty below its
optimal performance level to improve robustness. The
proposed reconstruction was stable and converged to
visually acceptable estimate even with noisy data.

We utilized a basic two state HMT model to capture
the correlations among wavelet coefficients. Other sta-
tistical models such as Gaussian scale mixtures (32)
or hierarchical Dirichlet processes (33) may better
capture these dependencies and potentially allow for
higher acceleration.

Since the proposed method solves successive L1 min-
imizations to form an estimate of sparse coefficients,
the algorithm is not guaranteed to find a global
minimum. Therefore, the choice of an initial guess is
critical. There are several possibilities: one is to use the
solution from L1 minimization. The regularization used
in the initial L1 minimization problem affects the final
reconstruction. If a weak l is used then the images will
have ringing and aliasing artifacts. If a strong l is used
then the images will be over-sparse with wavelet basis
artifacts. However, if the Haar wavelet is used rather
than a long tap filter in the initial L1 minimization, the
resultant images tend to have a benign blocking arti-
fact. Empirically, initializations using the Haar wavelet
with a strong l produced superior reconstructions.

This study has several limitations. For instance,
data from only six patients (12 carotids) were
included. Morphological measurements were re-
stricted to estimating area and thickness. Inclusion of
a larger number of subjects, and a larger number of
quantitative endpoints, will be important next steps.
Finally, this work has only demonstrated retrospective
acceleration. Prospective studies are required to es-
tablish the full potential of this approach, including
any reduction of motion artifacts, improvements in
patient comfort and workflow, and potential improve-
ments in spatial resolution.

In conclusion, we have demonstrated the applica-
tion of HMT model-based CS reconstruction to 3D
MERGE carotid MRI. This method exploits the con-
nected tree structure that exists in wavelet coefficients

of carotid images by permitting only certain configura-
tions of significant coefficients and support. The pro-
posed method provides superior reconstruction at
higher acceleration factors when compared to the
standard CS-MRI approach. Rate-4.5 acceleration
with 3D datasets was successfully demonstrated with-
out compromising image quality. This proposed
method can be utilized for reducing scan time,
improving resolution, and/or improving SNR.

REFERENCES

1. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL.
Magnetic resonance images lipid, fibrous, calcified, hemorrhagic,
and thrombotic components of human atherosclerosis in vivo.
Circulation 1996;94:932–938.

2. Soila K, Nummi P, Ekfors T, Viamonte M, Kormano M. Proton
relaxation times in arterial wall and atheromatous lesions in
man. Invest Radiol 1986;21:411–415.

3. Shinnar M, Fallon JT, Wehrli S, et al. The diagnostic accuracy of
ex vivo MRI for human atherosclerotic plaque characterization.
Arterioscler Thromb Vasc Biol 1999;19:2756–2761.

4. Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of
multispectral magnetic resonance imaging for identifying lipid-
rich necrotic cores and intraplaque hemorrhage in advanced
human carotid plaques. Circulation 2001;104:2051–2056.

5. Underhill HR, Hatsukami TS, Fayad ZA, Fuster V, Yuan C. MRI of
carotid atherosclerosis: clinical implications and future direc-
tions. Nat Rev Cardiol 2010;7:165–173.

6. Kim SE, Kholmovski EG, Jeong EK, Buswell HR, Tsuruda JS,
Parker DL. Triple contrast technique for black blood imaging with
double inversion preparation. Magn Reson Med 2004;52:
1379–1387.

7. Song HK, Wright AC, Wolf RL, Wehrli FW. Multislice double inver-
sion pulse sequence for efficient black-blood MRI. Magn Reson
Med 2002;47:616–620.

8. Yarnykh VL, Yuan C. Multislice double inversion-recovery black-
blood imaging with simultaneous slice reinversion. J Magn Reson
Imaging 2003;17:478–483.

9. Itskovich VV, Mani V, Mizsei G, et al. Parallel and nonparallel si-
multaneous multislice black-blood double inversion recovery
techniques for vessel wall imaging. J Magn Reson Imaging 2004;
19:459–467.

10. Crowe LA, Gatehouse P, Yang GZ, et al. Volume-selective 3D
turbo spin echo imaging for vascular wall imaging and distensi-
bility measurement. J Magn Reson Imaging 2003;17:572–580.

11. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE:
sensitivity encoding for fast MRI. Magn Reson Med 1999;42:
952–962.

12. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized auto-
calibrating partially parallel acquisitions (GRAPPA). Magn Reson
Med 2002;47:1202–1210.

13. Crowe LA, Varghese A, Mohiaddin RH, Yang GZ, Firmin DN.
Elimination of residual blood flow-related signal in 3D volume-
selective TSE arterial wall imaging using velocity-sensitive phase
reconstruction. J Magn Reson Imaging 2006;23:416–421.

14. Steinman DA, Rutt BK. On the nature and reduction of plaque-
mimicking flow artifacts in black blood MRI of the carotid bifur-
cation. Magn Reson Med 1998;39:635–641.

15. Candès EJ, Tao T. Near-optimal signal recovery from random
projections: universal encoding strategies? IEEE Trans Inf Theory
2006;52:5406–5425.

16. Donoho D. Compressed sensing. IEEE Trans Inf Theory 2006;52:
1289–1306

17. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of
compressed sensing for rapid MR imaging. Magn Reson Med
2007;58:1182–1195.

18. Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM,
Lustig M. Improved pediatric MR imaging with compressed sens-
ing. Radiology 2010;256:607–616.

19. Lustig M, Pauly JM. SPIR-iT: iterative self-consistent parallel
imaging reconstruction from arbitrary k-space. Magn Reson Med
2010;64:457–471.

3D MERGE Carotid MRI Using CS With HMT 1201



20. Makhijani MK, Nayak KS. Accelerated 3D carotid vessel wall
imaging using compressed sensing. In: Proc 17th Annual Meeting
ISMRM, Honolulu; 2009 (abstract 1824).

21. Baraniuk RG, Cevher V, Duarte MF, Hegde C. Model-based com-
pressive sensing. 2010;56:1982–2001.

22. Romberg JK, Choi H, Baraniuk RG. Bayesian tree-structured
image modeling using wavelet-domain hidden Markov Models.
IEEE Trans Image Processing 2001;10:1056–1068.

23. Duarte MF, Wakin MB, Baraniuk RG. Wavelet-domain compres-
sive signal reconstruction using a hidden Markov tree model. In:
Proc IEEE Int Conf Acoustics, Speech and Signal Processing
(ICASSP), Las Vegas; 2008 (p 5137–5140).

24. Do MN, Vetterli M. Wavelet-based texture retrieval using general-
ized Gaussian density and Kullback-Leibler distance. IEEE Trans
Image Processing 2002;11:146–158.

25. Crouse MS, Nowak RD, Baraniuk RG. Wavelet-based statistical
signal processing using hidden Markov models. IEEE Trans Sig-
nal Process 1998;46:886–902.

26. Rabiner L. A tutorial on hidden Markov models and selected
applications in speech recognition. Proc IEEE 1989;77:
257–285.

27. Candès EJ, Wakin MB, Boyd SP. Enhancing sparsity by
reweighted l1 minimization. J Fourier Anal App 2008;14:877–905.

28. Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C.
Carotid plaque assessment using fast 3D isotropic resolution
black blood MRI. Magn Reson Med 2011;65:627–637.

29. Needell D, Tropp J. CoSaMP: iterative signal recovery from
incomplete and inaccurate samples. Appl Comput Harmonic Anal
2009;26:301–321

30. Underhill HR, Yarnykh VL, Hatsukami TS, et al. Carotid plaque
morphology and composition: initial comparison between 1.5-
and 3.0-T magnetic field strengths. Radiology 2008;248:550–560.

31. Kerwin WS, Xu D, Liu F, et al. Magnetic resonance imaging of
carotid atherosclerosis: plaque analysis. Magn Reson Imaging
2007;18:371–378.

32. Wainwright MJ, Simoncelli EP. Scale mixtures of Gaussians and
the statistics of natural images. In: Solla SA, Leen TK, Muller
K-R, editors. Neural information processing systems (NIPS).
Cambridge, MA: MIT Press; 2000. p 855–861.

33. Kivinen J, Sudderth E, Jordan M. Image denoising with nonpara-
metric hidden Markov trees. In: Proc IEEE International Confer-
ence on Image Processing (ICIP), San Antonio, TX; Sept. 2007.

1202 Makhijani et al.


