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k-t FOCUSS: A General Compressed Sensing Framework
for High Resolution Dynamic MRI

Hong Jung,1 Kyunghyun Sung,2 Krishna S. Nayak,2 Eung Yeop Kim,3 and Jong Chul Ye1∗

A model-based dynamic MRI called k-t BLAST/SENSE has drawn
significant attention from the MR imaging community because
of its improved spatio-temporal resolution. Recently, we showed
that the k-t BLAST/SENSE corresponds to the special case
of a new dynamic MRI algorithm called k-t FOCUSS that is
optimal from a compressed sensing perspective. The main con-
tribution of this article is an extension of k-t FOCUSS to a
more general framework with prediction and residual encoding,
where the prediction provides an initial estimate and the resid-
ual encoding takes care of the remaining residual signals. Two
prediction methods, RIGR and motion estimation/compensation
scheme, are proposed, which significantly sparsify the resid-
ual signals. Then, using a more sophisticated random sampling
pattern and optimized temporal transform, the residual signal
can be effectively estimated from a very small number of k-t
samples. Experimental results show that excellent reconstruc-
tion can be achieved even from severely limited k-t samples
without aliasing artifacts. Magn Reson Med 61:103–116, 2009.
© 2008 Wiley-Liss, Inc.
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INTRODUCTION

In dynamic MRI, such as cardiac cine imaging or functional
MRI, the spatio-temporal resolution is the most impor-
tant quality measure. For example, in cardiac imaging,
even though ultra fast imaging sequences such as balanced
steady-state free precession (bSSFP) (1,2) are often used in
practice, acquisition of the whole cardiac volume within a
single breathold is still a demanding task (3).

To address this issue, various reconstruction methods
have been proposed using parallel coils and temporal
filtering. For example, SMASH (SiMultaneous Acquisi-
tion of Spatial Harmonics) (4), GRAPPA (GeneRalized
Autocalibrating Partially Parallel Acquisitions) (5), PILS
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(partially parallel imaging with localized sensitivities) (6),
and SENSE (SENSitivity Encoding) (7) belong to paral-
lel imaging techniques; whereas UNFOLD (UNaliasing by
Fourier-encoding the Overlaps Using the temporal Dimen-
sion) (8) uses temporal filtering to remove aliasing artifacts.
However, these methods have limitations such as low
signal-to-noise ratio (SNR) and the presence of aliasing
artifacts for high reduction factors.

Recently, a model-based approach called k-t BLAST/
SENSE has been proposed that largely overcomes the short-
comings of the aforementioned classical methods (9–12).
Specifically, this approach uses a diagonal form of the
signal covariance matrix obtained from training data and
imposes it as a priori information for the acquisition phase.
However, k-t BLAST/SENSE has a signal nulling problem at
temporal DC frequency since the temporal average image is
first subtracted to avoid energy concentration on temporal
DC frequency in y-f space (9,13). To overcome this problem,
Xu et al proposed SPEAR (SPatiotemporal domain based
unaliasing employing sensitivity Encoding and Adaptive
Regularization) (13) by combining k-t BLAST/SENSE and
RIGR (reduced-encoding imaging by generalized-series
reconstruction) (14). Unlike k-t BLAST/SENSE, SPEAR
obtains the initial estimate using RIGR rather than using the
temporal average. Then, the remaining aliasing artifacts are
resolved by k-t BLAST/SENSE using additional lattice sam-
pling. Consequently, SPEAR can achieve higher temporal
resolution without signal nulling.

Another recent development in dynamic MRI is the intro-
duction of the “compressed sensing (CS)” theory from
the signal processing community (15,16). According to
compressed sensing theory, perfect reconstruction is pos-
sible even from sampling rates dramatically smaller than
the Nyquist sampling limit by solving the l1 minimiza-
tion problem, as long as the non-zero spectral signal is
sparse and the samples are obtained with an incoher-
ent basis (15). For example, k-t SPARSE (17) successfully
employed the compressed sensing theory for cardiac imag-
ing applications by transforming the time varying image
using a wavelet transform along the spatial direction and
Fourier transform along the temporal direction. The com-
pressed sensing idea has been used for other applications
(18,38,39).

Even though the aforementioned k-t BLAST/SENSE and
the compressed sensing approach appear drastically dif-
ferent, a close look at the algorithms reveals striking simi-
larity between them. We previously showed (19) that the
diagonal signal covariance matrix in k-t BLAST/SENSE
indeed originates from the FOCal Underdetermined Sys-
tem Solver (FOCUSS) (20–22) originally designed to
obtain a sparse solution by successively solving quadratic
optimization problems. Furthermore, they showed that the
k-t BLAST/SENSE corresponds to the first iteration of so
called k-t FOCUSS that is optimal from a compressed
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sensing perspective. The implementation of k-t FOCUSS
is so simple that using only a few additional FOCUSS
iterations the remaining residual aliasing artifacts of k-t
BLAST/SENSE can be effectively suppressed and a high
spatio-temporal resolution can be achieved (19). This sug-
gests that k-t BLAST/SENSE indeed has a very close rela-
tion with the compressed sensing theory even though it was
not revealed in the original k-t BLAST/SENSE.

The main contribution of this article is an extension of k-
t FOCUSS to a novel compressed sensing framework using
prediction and residual encoding, where the prediction
approximately estimates the dynamic images and the resid-
ual encoding takes care of the remaining residual signals.
In fact, the prediction and residual encoding framework
is not new in dynamic MRI, though their importance has
not been appreciated. For example, in original k-t FOCUSS
(19), the temporal average corresponds to the prediction,
whereas the main body of the algorithm is for the resid-
ual encoding. However, the performance of k-t FOCUSS
can be further improved using better prediction since it
makes the residual energy much sparser, requiring fewer
k-t samples for residual encoding. This article proposes
two novel prediction schemes. First, similar to SPEAR, a
RIGR-based prediction scheme is proposed. The novelty
here is to exploit additional temporal correlation along
the read-out direction to further improve the prediction
efficiency of the conventional RIGR. Second, a motion esti-
mation/compensation (ME/MC) approach is proposed that
exploits the correlation between the frames using motion
vectors similar to video coding. Both methods significantly
sparsify the residual signal compared with the temporal
average. Furthermore, using more sophisticated random
sampling pattern and an optimized temporal transform,
the residual signal can be effectively estimated with a very
small number of k-t samples.

THEORY

Compressed Sensing

Consider the Cartesian trajectory. The readout direction
is along the kx axis, and ky denotes the phase encoding
direction. The samples along the readout direction are fully
sampled within TR. Let σ (y , t) denote the unknown image
content (for example, proton density, T1/T2 weighted
image, etc.) on y at time instance t. Then, the k-space
measurement υ(k, t) at time t is given by

υ(k, t) =
∫

σ (y , t)e−j2πky dy , [1]

or in a vector form:

υ = Fyσ [2]

where Fy denotes the Fourier transform along the y -
direction, and υ and σ denote the stacked k-t space mea-
surement vectors and the discretized image content to
be reconstructed, respectively. For high acceleration, the
length of the k-t measurement vector υ is much smaller than
that of σ , resulting in a highly underdetermined inverse
problem.

In cardiac cine imaging, the signal σ (y , t) can be effec-
tively sparsified using Fourier transform along the temporal

direction due to the periodic motion of the heart. More
specifically, let ρ(y , f ) denote the 2-D spectral signal in
the y-f domain. Then, we have the following 2-D Fourier
relationship:

υ(k, t) =
∫∫

ρ(y , f )e−j2π (ky+ft) dy df , [3]

or in a vector form:

υ = Fy Ftρ [4]

where Ft denotes the Fourier transform along the t-
direction. Then, the sparsity of the unknown signal can be
exploited by solving the following l1 minimization problem
(15,16):

minimize ||ρ||1
subject to ||υ − Fy Ftρ||2 ≤ ε [5]

where ||·||1 and ||·||2 denote the l1 and l2 norm, respectively,
and ε denotes the noise level.

k-t FOCUSS with Prediction/Residual Encoding

k-t FOCUSS was developed to address the l1 minimization
problem (Eq. [5]) using a reweighted quadratic optimiza-
tion technique (19). This article extends the original for-
mulation in Ref. 19 to a more general prediction/residual
encoding framework. More specifically, the unknown sig-
nal ρ is decomposed into the predicted signal ρ0 and the
residual signal �ρ:

ρ = ρ0 + �ρ. [6]

Our goal is now to try to impose the sparsity on the residual
signal �ρ rather than the total signal ρ. Specifically, the
compressed sensing approach for a dynamic MR image can
be represented as follows:

minimize ||�ρ||1
subject to ||υ − Fρ0 − F�ρ||2 ≤ ε [7]

where F = Fy Ft . Algorithm 1 describes the pseudo-
code implementation of k-t FOCUSS, which solves Eq. [7]
using reweighted quadratic optimization.1 To reduce the
total number of required k-t samples, we need a high-
performance prediction scheme to make the residual sig-
nal �ρ as sparse as possible. However, better predic-
tion often requires additional k-t samples. This illustrates
the fundamental trade-off between prediction and resid-
ual encoding, which should be carefully studied for best
performance.

Such trade-off between prediction/residual encoding
has an important parallel in video compression such as
MPEG (Motion Picture Expert Group) (23), which exploits
temporal redundancies to compress the video. A simplified
coding structure of MPEG without bidirectional (B) picture
is constituted in Fig. 1a. There are two types of frame cod-
ing. First, the intra pictures (I) are obtained using discrete

1Note that k-t FOCUSS solves the l1 minimization problem by setting p = 0.5
in Eq. [10] (19).
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Algorithm 1 Pseudo-code implementation of k-t FOCUSS

1. Initialize the weighting matrix W0.
2. Calculate the predicted signal ρ0.
3. For each l = 0, 1, · · · , repeat following until converged.

a. Solve the following l2 optimization problem for ql :

min ||ql ||2, subject to ||υ − Fρ0 − FWlql ||2 ≤ ε [8]

b. Calculate ρl+1:

ρl+1 = ρ0 + Wlql

= ρ0 + �lFH (F�lFH + λI)−1(υ − Fρ0), where �l = WlWH
l . [9]

c. update Wl+1:

Wl+1 =




|�ρl+1(1)|p 0 · · · 0
0 |�ρl+1(2)|p · · · 0
...

...
. . .

...
0 0 · · · |�ρl+1(N )|p


 , 1/2 ≤ p ≤ 1 [10]

where �ρl+1(n) = ρl+1(n) − ρ0(n)
d. increase l, and go to the step (a).

cosine transform (DCT) by exploiting the spatial correlation
as done in still image compression (23). Then, the predicted
pictures (P) are coded using past reference frames and pre-
viously predicted pictures. The P frame can compress the
data significantly by exploiting the temporal redundancies
using motion estimation and compensation (ME/MC). The
remaining residual signals that cannot be estimated from
ME/MC are then encoded using residual encoding with
DCT. Now, we can observe the fundamental trade-off in
video coding. As the reference I frame becomes more accu-
rate and the motion estimation accuracy increases using
very dense motion vector fields, the residual signal can
be significantly sparsified. But, such accurate I frame and
dense motion fields will introduce additional coding bits.
On the contrary, if a smaller number of bits is used for
prediction, the residual signal becomes large, requiring sig-
nificant number of bits for residual coding. Therefore, the
optimal bit allocation for I frame coding, motion vectors,
and residual coding has been an important issue in video
compression (23).

This article presents two prediction/residual encoding
schemes. The first is based on the 2-D RIGR method and
the latter uses ME/MC. Both methods are effective in spar-
sifying the residual signal. Moreover, our k-t FOCUSS
framework is so general that other types of high perfor-
mance prediction/residual encoding could be employed to
achieve the high performance.

IMPLEMENTATION OF PREDICTION/RESIDUAL
ENCODING

Recall that the (l + 1)-th update of the k-t FOCUSS frame-
work can be summarized as follows:

ρl+1 = ρ0︸︷︷︸
prediction

+ �lFH (F�lFH + λI)−1(υ − Fρ0)︸ ︷︷ ︸
residual encoding

, [11]

FIG. 1. The proposed methods utilize ideas from video compression
and the MPEG standard. (a) MPEG video with I and P frames. (b)
Motion estimation, and (c) motion compensation used in k-t FOCUSS
MAD implies mean absolute difference. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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where �l = WlWH
l . This section explains how to opti-

mize the prediction and residual encoding to improve the
reconstruction quality of the k-t FOCUSS.

Prediction Step

Prediction by 2-D RIGR

The main assumption of RIGR is that in most dynamic
imaging problems, the high resolution image content does
not change drastically from one image to another and there-
fore need not be obtained every time (14). As shown in
Fig. 2, the sampling pattern for RIGR includes fully sam-
pled high resolution references and the additional dynamic
encoding for the low frequency region of k-t space. Then,
spatial basis functions of a generalized series model are
constructed from the reference image, and dynamic images
are estimated using spatial basis functions of the general-
ized series model and fully sampled low frequency data.
Even though this RIGR estimate is not perfect in describ-
ing sophisticated temporal variations in dynamic MRI, it
can be a good prediction that sparsifies residual signal
significantly as shown in SPEAR (13).

However, as shown in Fig. 3(a), the original RIGR
does not exploit the temporal correlation between the
neighboring pixels along the read-out direction. Consider-
ing the parallel in video coding, better prediction can be
obtained by exploiting the temporal correlation between
the frames along the read-out as well as the phase encoding
direction as shown in Fig. 3(b). More specifically, when two
reference images are obtained, let �ρref (x, y ) be the differ-
ence image obtained by subtracting the first reference image
from the second at (x, y ). Then, the n-th basis function for
the generalized series model is given by

φn(x, y ) = |�ρref (x, y )|ei2πn�ky , [12]

where �k = 1/FOV. When only one reference frame is
measured, we can simply set �ρref (x, y ) with the only ref-
erence itself without difference from some other frames. In

our 2-D RIGR, the difference image �ρ(x, y ; t) is estimated
using the following 2-D expansion:

�ρ(x, y ; t) =
P/2∑

k=−P/2

M/2−1∑
n=−M/2

cx (k, n; t)φn(x − k, y ), [13]

where P and M are the number of neighboring pixels
along the read-out direction, and phase encoding direction
respectively, and {cx (k, n; t)}n=M/2−1

n=−M/2 now becomes a two
dimensional filter, which is dependent on the read-out
coordinate x. Note that in the conventional RIGR, P = 0
and the filter is one dimensional.

To use Eq. [13], we must determine the coefficients
cx (k, n; t). If both sides of Eq. [13] are Fourier transformed
along the phase encoding direction, we have:

�d(x, m, t) =
P/2∑

k=−P/2

M/2−1∑
n=−M/2

cx (k, n; t)�dref (x − k, m − n),

[14]

where �d(x, m, t) and �dref (x, m) represent the 1-D Fourier
transform of �ρ(x, y , t) and |�ρref (x, y )| along the phase
encoding direction y , respectively. Here, �d(x, m, t) can be
obtained from the fully sampled center region in the RIGR
sampling pattern. Then, we have:

Hcx (t) = dx (t), [15]

where

dx (t) = [
�d(x, −M/2, t) �d(x, −M/2 + 1, t) · · ·

d(x, M/2 − 1, t)
]T ∈ C

M

cx (t) = [
cx (−P/2, −M/2, t) cx (−P/2 + 1, −M/2, t) · · ·

cx (P/2, M/2 − 1, t)
]T ∈ C

(P+1)M [16]

and

H =




�dref (x + P/2, 0) �dref (x + P/2 − 1, 0) · · · �dref (x − P/2, −M + 1)
�dref (x + P/2, 1) �dref (x + P/2 − 1, 1) · · · �dref (x − P/2, −M + 2)

...
...

. . .
...

�dref (x + P/2, M − 1) �dref (x + P/2 − 1, M − 1) · · · �dref (x − P/2, 0)


 ∈ C

M×(P+1)M . [17]

Hence, cx (t) can be calculated as follows:

cx (t) = HH (HHH )−1dx (t). [18]

Prediction by ME/MC

Motion estimation and compensation (ME/MC) is an essen-
tial step in video coding that uses motion vectors to exploit
the temporal redundancies between frames (23). To dis-
cuss how we can apply ME/MC to dynamic MRI, we will
first review each process. ME is a process for the estima-
tion of motion vectors, and the most popular method used
in video coding is the Block Matching Algorithm (BMA).
Suppose that Bm indicates a block, then the following

relation should be satisfied (24):

⋃
m∈M

Bm = 	, Bm

⋂
Bn = ∅, when m �= n. [19]

Here, M is a set of the indexes of blocks and 	 implies the
set of all of the pixels in the one image. The block matching
algorithm calculates the mean absolute difference (MAD)
between the reference frame σ ref and the current frame σ cur

over each block Bm in order to obtain a motion vector dm

by minimizing the following cost function:

E(dm) =
∑

x∈Bm

|σ ref (x + dm) − σ cur(x, t)|. [20]



k-t FOCUSS 107

FIG. 2. Summary of various dynamic MRI techniques.

In Eq. [20], the most robust method is to find the vector
with the smallest MAD within a search window, as shown
in Fig. 1b. Now, MC can be addressed to decode the pre-
dicted frames using the motion vectors obtained during
ME. In contrast to the ME process, MC is a quite simple
process since it just relocates pixels or blocks on the refer-
ence frames according to the corresponding motion vectors.

More specifically, if the motion vector for the (x, y , t) coor-
dinate is [i, j], the corresponding pixel values on the motion
compensated frame σmc can be copied from the reference
frame σ ref as follows:

σmc(x, y , t) = σ ref (x + i, y + j). [21]

FIG. 3. Prediction scheme for (a) RIGR with the 1-D filter. By expanding filter dimension to the read-out direction as shown in (b), the spatial
correlation along the read-out direction can be effectively exploited. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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To employ ME/MC within dynamic MRI, there are sev-
eral technical issues to address. First, at least one reference
frame σ ref is required in Eq. [20]. This issue can be easily
resolved since RIGR has already employed the reference
frames as discussed in the previous section. These refer-
ence frames can fulfill the same role as I frames in MPEG
coding and can be used in the MC step. The main tech-
nical difficulty, however, comes from the existence of the
current frame σ cur of Eq. [20]. Unlike the encoder in the
video coding, the current frame σ cur is not available in a
highly accelerated dynamic MRI since the only available
data in the highly accelerated dynamic MRI is the reduced
number of k-space data. Does this imply that the ME pro-
cess is not feasible? Fortunately, this issue can be addressed
using an additional reconstruction step before the ME/MC.
More specifically, suppose there exists a reconstruction
algorithm that can reconstruct the current frame approxi-
mately. Now, let σ̂ cur be the estimated current frame. Then,
the cost function for the ME in Eq. [20] can be modified as
following:

E(dm) =
∑

x∈Bm

|σ ref (x + dm) − σ̂ cur(x, t)|, [22]

where the estimated current frame σ̂ cur is used for the ME.
Of course, a better reconstruction algorithm can provide
accurate estimation of the current frame σ̂ cur and more con-
sistent motion vectors accordingly. We found that our k-t
FOCUSS in Ref. 19 can work toward such a goal. With
the resulting motion vectors, the MC step can be easily
implemented using Eq. [21].

Although our ME step is more involved than its counter-
part in video coding, our ME process offers many advan-
tages. In video coding, an encoder transmits the motion
vectors separately using additional bits. This implies that
a dense motion vector field is usually prohibited. In con-
trast, the motion vectors are estimated from the data itself
in a dynamic MR without additional sample allocation.
Therefore, a dense motion vector field as well as multi-
ple reference frames can be used in the ME step to improve
the estimation performance. For example, when there are
two reference frames, Eq. [21] can be modified using lin-
ear interpolation as illustrated in Fig. 1c. More specifically,
suppose that two reference frames are measured at times 0
and T , and the motion vectors for a certain pixel or block
positioned on (x, y , t) with respect to each reference frame
are (i1, j1) and (i2, j2), respectively. Then, the interpolated
MC is as follows.

σ 0(x, y , t) = tσ ref1(x1, y1) + (T − t)σ ref2(x2, y2)
T

[23]

where x1 = x + i1, y1 = y + j1 and x2 = x + i2, y2 = y + j2,
and where σ ref1 and σ ref2 represent the measured reference
frames at times 0 and T .

Second, since no additional information is required
with more sophisticated ME/MC, a modified block-based
ME/MC with overlapping blocks can be implemented to
remove the blocking artifact. Here, the block size is fixed to
2 pixels × 2 pixels, and the total number of obtained motion
vectors is equal to the number of total pixels on the image
due to the nature of overlapping block-based ME/MC. This

overlapping ME/MC procedure with small block size can
effectively remove the blocking artifacts through averaging.

There are many advantages to using ME/MC to obtain the
predicted signal ρ0. First, finer dynamic image structure
can be obtained without noticeable blurring because MC
just relocates the corresponding pixels of the fully sampled
reference frames. Second, unlike the RIGR, k-t samples are
not fully allocated for the prediction step because the esti-
mation is performed on the image domain rather than the
frequency domain. Therefore, most of the k-t samples can
be reused in the following residual encoding step. Third,
the algorithm can be applied to any k-t space trajectory
including spiral or radial, since all the ME/MC steps are
done in the image domain. In contrast, the RIGR algorithm
is specifically tailored to the Cartesian trajectory.

Residual Encoding

The main focus of the residual encoding step is to effi-
ciently estimate the residual signal using a small number
of k-t samples. Since the prediction step provides a sparse
residual, k-t FOCUSS can effectively exploit the sparsity of
the residual signal. However, even for a given prediction
scheme, it is still possible to further optimize the residual
encoding.

In general, the temporal transform Ft in Eq. [4] is not nec-
essarily a Fourier transform. In dynamic imaging such as
cardiac cine, a Fourier transform along the temporal direc-
tion effectively sparsifies the signal due to the periodic
nature of cardiac motion. However, for nonperiodic motion
like fMRI, we can often get a significantly sparser signal
from a Karhunen-Loeve Transform (KLT) as compared to a
Fourier transform (19) since the KLT represents motions of
images with only a few coefficients corresponding to some
significant eigenvectors. In order to calculate the eigenvec-
tors for the KLT, the covariance matrix for the temporal
variation of the image content σ (x, t) is calculated using the
densely sampled low frequency region of the k-t samples.

So far, the temporal transform has been discussed as a
sparsifying transform. Another option remains, which is
the spatial transform Fy . For example, k-t SPARSE (17)
employs a wavelet transform on the spatial domain and
a Fourier transform along the temporal direction to make
the signal sparse. The wavelet transform converts spa-
tial information into a low-frequency approximate image
and high-frequency detail components. Recall that high-
frequency detail components tend to be sparse thanks to the
property of wavelets, which may be exploited to reduce the
k-t samples. However, careful consideration is required in
using wavelet transform on the spatial domain. Depending
on the regularity of the wavelets, the reconstructed image
could be a little blurred or exhibit cartoon-like artifacts
even though aliasing artifacts can be effectively removed.

METHOD

Downsampling Experiments

We acquired two sets of cardiac cine from different vol-
unteers using a 1.5 T Philips scanner at Yonsei University
Medical Center, Seoul, Korea. Each of sets is composed of
25 frames of full k-space data. The field of view (FOV) of
the first and second data set were 345.00 × 270.00 mm2
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FIG. 4. Comparison of various prediction schemes. Temporal average, conventional RIGR, 2-D RIGR, and ME/MC are shown in (a), (b),
(c), and (d), respectively. To compare these clearly, the difference images are also illustrated. (a), (b), and (c) do not follow the true motion.
In fully sampled image, systole cardiac phase is shown, but the cardiac boundary of (a), (b), and (c) still remain in diastole phase (indicated
with white arrow). Furthermore, (b) is severely degraded because spatial correlation cannot be fully exploited in the conventional RIGR. In
contrast, the degraded structure can be recovered better in (c). Finally, (d) shows greatly improved prediction result, which is very close to
the fully sampled image.

and 306.00×260.00 mm2, respectively. The matrix size for
both scanning was 220 × 256, which corresponds to 220
phase encoding steps and 256 samples in frequency encod-
ing. In these experiments, the phase encoding direction is
vertical. The slice thickness was 10.0 mm, and the acqui-
sition sequence was balanced steady-state free precession
(bSSFP) with a flip angle of 50◦ in both data acquisition.
The heart rate of the first and the second subject were 75
bpm and 65 bpm, respectively, and the retrospective car-
diac gating was used for each acquisition. The repetition
time TR was 3.17 ms and 3.23 ms, respectively.

In Vivo Experiments

In vivo experiments were performed on a GE Signa EXCITE
3.0T system (General Electric Healthcare, Waukesha, WI)
at the University of Southern California, Los Angeles, with
gradients capable of 40 mT/m amplitude and a 150 T/m/s
slew rate. A body coil was used for RF transmission and
an 8-channel phased array cardiac coil was used for sig-
nal reception. The transmit gain was calibrated using a
standard pre-scan and the center frequency was adjusted
over a 3D region of interest containing the left ventricle
(LV). Synchronization with the cardiac cycle was achieved
with prospective triggering based on a plethysmograph sig-
nal. The Institutional Review Board of the University of
Southern California approved the imaging protocols. Each
subject was screened for magnetic resonance imaging risk
factors and provided informed consent in accordance with
institutional policy.

The acquisition sequence was balanced SSFP, and imag-
ing parameters were as follows: TR = 3.7 ms, flip angle

= 45◦, slice thickness = 5 mm, FOV = 30 cm, views per
segment = 10, cardiac phase = 25, and matrix size = 240
× 256 (full k-space data).

According to Bieri et al. (25), in balanced SSFP, random
sampling introduces significant transient artifacts that are
related to unbalanced phase due to eddy currents stemming
from the phase encoding gradient. These effects are accen-
tuated when there are large jumps in the phase encode
order. This observation may incur some concerns about
the applicability of k-t FOCUSS for cardiac cine imaging.
Recall that the main requirement of compressed sensing
is the incoherent measurement bases (16). Random k-t
sampling is one sampling pattern which can satisfy such
a requirement, but is not the only sampling pattern. As
long as we can find other sampling patterns to make the
measurement bases incoherent, we can use them for k-t
FOCUSS. Interestingly, Bieri et al. (25) proposed a simple
and effective eddy current compensation method for bSSFP
by pairing the consecutive PE steps.

Hence, for the accelerated acquisition, we employed the
pair-wise random sampling pattern described in Fig. 8a.
More specifically, the fully sampled eight lowest spatial fre-
quencies were acquired and 32 additional random samples
were obtained by pairing the consecutive PE steps. Conse-
quently, the total number of phase encoding steps was 40
and the acceleration factor was six.

RESULTS

Downsampling Experiments

We have compared k-t FOCUSS results with k-t BLAST/
SENSE and SPEAR. For the k-t BLAST/SENSE and SPEAR,
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FIG. 5. Comparison of various reconstruction methods, (a) k-t BLAST, (b) SPEAR, (c) k-t FOCUSS with temporal average, (d) k-t FOCUSS
with 2-D RIGR, and (e) k-t FOCUSS with ME/MC. (f) The frame-by-frame MSE plot for each method. The top row shows the reconstructed
results at the 3.5 fold acceleration. All of the results show quite good quality, but (a), (b), and (c) show remaining aliasing artifacts (indicated by
black arrows). The bottom row shows the results at the 6.5 fold acceleration. The aliasing artifacts become noticeable. The aliasing artifacts
are indicated by black arrows.

the lattice sampling patterns as shown in Fig. 2 were
employed. For k-t FOCUSS implementation, the random
sampling patterns in Fig. 2 were used. As discussed in Ref.
19, a random sampling pattern using Gaussian distribution
outperforms uniform sampling. In these simulations, fully
sampled low frequency regions composed of the eight low-
est spatial frequencies are included to provide initial low
resolution images W0.

To verify the prediction and residual encoding concept in
k-t FOCUSS, we first compared the performance of various
prediction schemes. Figure 4 shows the various predictions
for the first data set. Among these, ME/MC based prediction
provides the best visual reconstruction quality. And, 2-D
RIGR outperforms the conventional RIGR.

Now, we compared the k-t FOCUSS with k-t BLAST/
SENSE and SPEAR at the reduction factor of 3.5 and 6.5
in Fig. 5. For the 3.5-fold acceleration, fully sampled 8
phase encoding lines in the low frequency region and
53 phase encodings for the high frequency region out of
a total of 220 phase encodings were sampled. In a sim-
ilar way, for the 6.5-fold acceleration, fully sampled 8
phase encoding lines in the low frequency region and

26 phase encodings for the high frequency region were
sampled. The reconstruction results of k-t BLAST/SENSE,
SPEAR, k-t FOCUSS with temporal average, k-t FOCUSS
with 2-D RIGR, and k-t FOCUSS with ME/MC are illus-
trated in Fig. 5a–e, respectively along with the difference
images in order to clearly show the improvement. The
figures in the top row illustrate the results for the 3.5-
fold acceleration. In this case, all of the results show
clear structures of heart while different pattern of aliasing
artifacts are observed especially in k-t BLAST/SENSE,
SPEAR and k-t FOCUSS with temporal average. When
k-t FOCUSS with 2-D RIGR or k-t FOCUSS with ME/MC
is used, the aliasing artifacts are clearly removed and
only small residual error remains on cardiac bound-
ary. For the quantitative comparision, we plotted the
frame-by-frame Mean Squared Error (MSE) in Fig. 5f.
Although k-t BLAST/SENSE, SPEAR, and k-t FOCUSS
with temporal average do not show big difference, k-
t FOCUSS with 2-D RIGR and ME/MC clearly reduce
MSE over all frames. Similar experiments were per-
formed for the 6.5-fold down sampled data and the
results are shown in the bottom row of Fig. 5. Here,
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FIG. 6. Reconstructed y-t slices are shown to compare the temporal variation. On the top, the reference image from fully sampled k-t data is
shown. Some significant movements of the heart are pointed with white arrows. The results of k-t BLAST, SPEAR, k-t FOCUSS with temporal
average, k-t FOCUSS with 2-D RIGR and k-t FOCUSS with ME/MC are shown in (a), (b), (c), (d), and (e), respectively. In k-t FOCUSS with
2-D RIGR and k-t FOCUSS with ME/MC, the movement of heart is most clearly seen, and the difference signals are very small.

k-t FOCUSS algorithm consistently outperforms. For
the higher acceleration factor, k-t BLAST/SENSE and
SPEAR cannot effectively remove aliasing artifacts and
these aliasing artifacts become very severe. In contrast,
k-t FOCUSS methods effectively suppress aliasing artifacts
and reconstruct much improved images compared to k-t
BLAST/SENSE and SPEAR. The MSE plot also confirms
quantitatively that k-t FOCUSS methods show improved
performance. Especially, k-t FOCUSS with 2-D RIGR and
ME/MC have the smallest MSE over all frames.

In Fig. 6, we illustrated the temporal variation of a slice
from the cardiac volume. In this case, we used the second
data set at a higher reduction factor of 11. Fully sampled
8 phase encoding lines in the low frequency region and 12
phase encodings for the high frequency region were sam-
pled out of a total of 220 phase encodings. As a reference
image, we illustrated the y-t image which is reconstructed
from the fully sampled data set on the top of Fig. 6. Some
heart movements are visible and are indicated with white
arrows. However, in the k-t BLAST/SENSE reconstruction
in Fig. 6a, there is no such movement due to the signal
nulling problem. Recall that k-t BLAST/SENSE employs
the lattice sampling pattern and initially subtracts tempo-
ral average in order to avoid energy concentration on the DC

term of the temporal Fourier transform. The subtraction of
the temporal average forces the DC frequency zero, which is
replicated in y-f domain due to the lattice sampling pattern.
The number of the zero frequency replicas is determined by
the acceleration factor. Even if k-t BLAST/SENSE unfolds
aliasing of replicas on y-f space, the replicated frequencies
initially set to zero cannot be recovered. As a consequence,
no temporal variation is observed in (a). By resolving signal
nulling problem, SPEAR in Fig. 6b shows some move-
ments but this is still far from the reference movements.
k-t FOCUSS with temporal average in Fig. 6c follows the
movements much more clearly than above two methods.
When k-t FOCUSS with 2-D RIGR or ME/MC in Fig. 6d,e
are used, the reconstructed y-t image greatly follows the
reference movements. The difference images much more
clearly show the performance of each method. We have also
plotted average pixel values within a 5 pixel by 5 pixel
region of interest (ROI) along the temporal direction (see
Fig. 7). The ROI was chosen at the area that has the most
significant motion. We can clearly see that k-t FOCUSS with
2-D RIGR and ME/MC follows the true temporal variation
much more accurately than any of the other methods while
the other methods show temporal blurring compared to
true variation. Note that k-t BLAST/SENSE can not follow



112 Jung et al.

FIG. 7. The temporal variation of averaged signals in 5 × 5 pixels ROI for the case of (a) k-t BLAST, (b) SPEAR, (c) k-t FOCUSS with
temporal average, (d) k-t FOCUSS with 2-D RIGR, and (e) k-t FOCUSS with ME/MC, respectively. In this experiment, the acceleration factor
not including training data set was 16 and the total time frame number was 25. Because k-t BLAST initially subtracts the temporal average, the
temporal DC frequency with zero values are also replicated in 16 times along the temporal frequencies out of the total 25 number of temporal
frequencies. Consequently, more than half of original spectrum becomes zero. The zero value signal cannot be recovered through k-t BLAST,
and results in the signal nulling problem. Consequently, (a) shows severely blurred temporal variation. Meanwhile, (d) and (e) follow the true
temporal variation very closely. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

true variation at all because of severe signal nulling prob-
lem at high acceleration factor as explained above. We are
aware that the original k-t BLAST/SENSE avoids such sig-
nal nulling problem by modifying the acquisition timing
(9), which is, however, more complicated than the simple
random sampling pattern used in k-t FOCUSS.

As discussed before, temporal Fourier transform works
as a special case as a sparsifying transform and other trans-
forms can also be used instead. To verify this, we applied
a KLT (Karhunen-Loeve Transform) and a wavelet trans-
form along the temporal direction and the spatial direction,
respectively, as different choices of sparsifying transforms.
For KLT, from the covariance matrix of the temporally
varying images of intermediate k-t FOCUSS results, the
KLT basis was obtained using eigen-decomposition. As
a consequence, KLT can represent the temporally vary-
ing signal with only a few eigen-basis. Similarly, wavelet

transform can be considered as a sparsifying transform
along the spatial direction. All these methods reconstruct
better images than k-t BLAST and SPEAR. However, the
improvement over the k-t FOCUSS with simple temporal
Fourier transform was negligible, so we have not illustrated
the reconstruction results.

In Vivo Experiments

Two cardiac phases representing diastole and systole
reconstructed from the full data set are illustrated in Fig. 8b.
These results were used as a reference for validation of the
following k-t FOCUSS reconstruction from the accelerated
data set. Figure 8c shows the direct inverse Fourier trans-
form using the k-space data from the accelerated acquisi-
tion. Because of severe aliasing due to high acceleration,
we cannot see any important features of the heart. Applying



k-t FOCUSS 113

FIG. 8. In vivo experimental results. In order to reduce eddy current effects, pair-wise random sampling pattern as shown in (a) was employed
at the acceleration factor of six. (b) shows reconstruction from fully sampled data. (c) shows the direct Fourier inversion reconstruction from
6× accelerated acquisition, which shows serious aliasing artifacts. Applying k-t FOCUSS with 2-D RIGR and ME/MC, high resolution images
were reconstructed as shown in (d) and (e), respectively. No aliasing artifacts were observed and diastole and systole of cardiac phase are
clearly visible.

k-t FOCUSS with 2-D RIGR and ME/MC, we successfully
reconstructed high resolution dynamic MR images without
aliasing artifacts in Fig. 8d,e. Here, one of the frames from
the full k-space acquisition was used as a reference frame
for 2-D RIGR and ME/MC. Fig. 8d,e clearly show diastole
and systole phases of the heart including the depiction of
fine cardiac structure. Note that the full data acquisition
required 24 heartbeats, whereas only 4 heartbeats were nec-
essary for the accelerated data acquisition. We can expect
the advantages of k-t FOCUSS to be more significant when
applied to volumetric acquisitions.

To evaluate eddy current effects (25), we tested k-t
FOCUSS with unpaired random phase encode ordering
with the same acceleration factor of six. Results (not shown)
exhibited very poor image quality.

DISCUSSION

Relation to k-t BLAST/SENSE and SPEAR

In Ref. 19, we showed that the conventional k-t
BLAST/SENSE corresponds to the special case of our k-t
FOCUSS with temporal avrage. In this article, we further
extend the analysis and show that the SPEAR algorithm is
also a special case of our k-t FOCUSS algorithm.

Recall that the equation for k-t BLAST/SENSE is given
by

ρ = ρ̄ + �FH (F�FH + λI)−1(υ − Fρ̄), [24]

where F denotes the 2-D Fourier transform and ρ̄ is the
temporal average of measurements, and � is a diagonal
signal covariance matrix obtained from training or inter-
leaved low frequency data. Note that the temporal DC term
ρ̄ is separately processed in Eq. [24]. Since most energy is
concentrated on the DC frequency, signals at a higher tem-
poral frequency band cannot be fully recovered unless the
DC frequency is processed separately. However, the sub-
traction of the temporal average gives rise to a significant
problem called signal nulling (13). This problem induces
severe degradation for temporal resolution when the down-
sampling ratio is high. To resolve this problem, SPEAR has
been proposed recently using RIGR reconstruction instead
of temporal average (13). The SPEAR update is exactly the
same as that of k-t BLAST/SENSE except the initialization:

ρ = ρRIGR + �FH (F�FH + λI)−1(υ − FρRIGR). [25]

The only additional requirement for SPEAR is obtain-
ing two reference frames at the beginning and the
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end of dynamic encodings to incorporate the RIGR
algorithm.

If we compare Eqs. [24] and [25] with our k-t
FOCUSS update in Eq. [11], we can easily find that k-t
BLAST/SENSE corresponds to the first iteration of k-t
FOCUSS with temporal average, whereas SPEAR corre-
sponds to the first iteration of k-t FOCUSS with RIGR.
Note that k-t BLAST/SENSE and SPEAR use the lat-
tice sampling pattern, which violates the incoherence
of measurement in compressed sensing. Hence, these
algorithms do not show improvement as the iteration
number grows as discussed in Ref. 19. However, k-t
FOCUSS is based on a random sampling pattern; hence,
the results improve with the iteration as indicated by the
theory.

Relation to UNFOLD and PARADIGM/PARADISE

The method called UNFOLD (UNaliasing by Fourier-
encoding the Overlaps Using the temporal Dimension) (8)
is another method for fast data acquisition using lattice
sampling pattern. Theoretically, the optimal lattice design
problem can be formulated as a spatio-temporal sampling
problem in k-t space under the so-called time sequen-
tial sampling (TSS) constraint (26). Bresler et al. (27,28)
proposed Patient-Adaptive Reconstruction and Acquisi-
tion Dynamic ImaginG Method (PARADIGM) that achieves
a high temporal and spatial resolution with a multifold
reduction using the optimal TSS pattern calculated on
the fly. A generalization of TSS for the phase array coil
data acquisition called Patient-Adaptive Reconstruction
and Acquisition Dynamic Imaging with Sensitivity Encod-
ing (PARADISE) has been recently proposed by Sharif
et al. (29,30). The maximum achievable acceleration fac-
tor can be up to the parallel imaging acceleration fac-
tor multiplied by that of the optimized time sequential
sampling.

In theory, if the signal is band-limited and the exact
support can be estimated, PARADISE and PARADIGM are
optimal in the sense that they provide the minimal distor-
tion in the reconstructed image by adaptively estimating
the coefficients. More specifically, the reconstruction error
from such adaptive estimation is given as follows (15):

∥∥ρ − ρ∗
adapt,M

∥∥
2

<∼ M−r

where ρ∗
adapt,M denotes the adaptive estimate from M mea-

surements and the decay rate r depends on the signal
smoothness. However, in many applications, the signal
support is not band-limited and is difficult to estimate in
real time. In this case, a compressed sensing approach like
k-t FOCUSS using random sampling pattern is a perfect
fit since the unknown sparse signal can be simultane-
ously estimated during the l1 minimization process and no
additional steps are required for support estimation. How-
ever, a blind use of a compressed sensing approach like
k-t FOCUSS requires a little caution. Donoho et al. (15)
showed that the error decay rate for the compressed sensing
approach is given by

∥∥ρ − ρ∗
cs,M

∣∣
2

<∼ (M/ log N )−r

where ρ∗
cs,M denotes the compressed sensing estimate using

M samples, and N denotes the total length of the unknown
signal. This implies that in order to achieve similar recon-
struction error as in adaptive estimation, compressed sens-
ing reconstruction must pay log N penalties in total number
of k-t samples. Still, if the signal is sparse in some basis,
the resultant k-t sample number is much smaller than the
Nyquist rate even with the log N penalty, hence validat-
ing the advantage of k-t FOCUSS. Furthermore, any type
of temporal transform can be used for k-t FOCUSS as long
as it can effectively sparsify the unknown signal, whereas
the aforementioned lattice sampling approaches usually
require temporal Fourier transforms. Therefore, we believe
that k-t FOCUSS can find many important applications in
dynamic MR imaging applications.

2-D RIGR vs. ME/MC

In this article, we have compared the k-t FOCUSS with 2-D
RIGR and ME/MC. The results indicate that k-t FOCUSS
with ME/MC outperforms k-t FOCUSS with 2-D RIGR.
Then, one may be wonder why we are interested in 2-D
RIGR prediction at all. The main reason concerns com-
putational complexity. 2-D RIGR exploits the temporal
redundancies in k-space whereas ME/MC decorrelates the
temporal correlation using motion estimation in the spa-
tial domain. It turns out that the motion estimation step is
the most time-consuming part in video coding (23). Fur-
thermore, k-t FOCUSS with ME/MC requires additional
application of k-t FOCUSS for motion estimation. Though
the final reconstruction quality of k-t FOCUSS with 2-
D RIGR is not as good as k-t FOCUSS with ME/MC, the
computational complexity is very small and can be imple-
mented in real time. However, it is important to note that
when the k-t space trajectory is non-cartesian, ME/MC can
still be applied, whereas the RIGR algorithm only works for
cartesian theory. Therefore, users should make a judicious
decision on which prediction scheme should be used.

Reference Frames

Even though one or two reference frames are used for the
prediction step using 2-D RIGR and ME/MC, they are not
mandatory for k-t FOCUSS. Specifically, even if no refer-
ence frame is available, at least one reference frame can
be generated using temporal average image of k-t measure-
ments. Figure 9 clearly shows that 2-D RIGR and ME/MC
can be very effectively used even if no reference frame
is available. Here, 2-D RIGR and ME/MC were performed
using temporal average as a reference frame. Compared to
k-t FOCUSS which uses just temporal average as a predic-
tion (a), k-t FOCUSS with 2-D RIGR (b) and ME/MC (c)
clearly reduce aliasing artifacts for the same down sam-
pled data even without the reference frames. The MSE plot
(d) also confirms this quantitatively.

Actually, the advantage of using additional one or two
fully sampled reference frame is to minimize the error
propagation in the 2-D RIGR and ME/MC prediction espe-
cially at the high acceleration factor. Furthermore, there are
many practical dynamic MR applications where we can
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FIG. 9. When two fully sampled reference frames are not available, 2-D RIGR and ME/MC can still work using temporal average as a
reference frame. (a) k-t FOCUSS with temporal average, (b) k-t FOCUSS with 2-D RIGR, and (c) k-t FOCUSS with ME/MC. (d) frame-by-
frame MSE plots. See white arrows. The artifacts seen in (a) disappear in (b) and (c). [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

easily obtain fully sampled reference frames. For exam-
ple, in fMRI applications, we can easily obtain the fully
sampled reference frame during the resting phase of the
paradigm. Other applications include perfusion imaging,
contrast enhanced angiography, diffusion tensor imaging
(DTI), and etc, where we can control the initiation of the
activation.

Extension to fMRI

Throughout the article, our new algorithm has been applied
to reconstruct high spatio-temporal resolution from very
limited data samples in dynamic cardiac MR imaging.
However, another important application that requires very
high spatio-temporal resolution is functional MR imaging
(fMRI). Recall that fMRI is a technique to monitor brain
hemodynamics for specific stimulus, behaviors, or mental
status of a subject. Usually, fMRI data are scanned with very
fast imaging sequence such as EPI. For the matrix size of
64 pixels × 64 pixels, two or three second temporal reso-
lution can be achieved for covering whole brain using EPI
sequence. However, the highly accelerated acquisition is
often required for the extensive analysis of cognitive fMRI
study using higher resolution EPI images. For this applica-
tion, k-t FOCUSS can be employed. In Ref. 19, we briefly
demonstrated the feasibility of k-t FOCUSS for the acceler-
ated acquisition of fMRI data. Using improved k-t FOCUSS
with new prediction and residual encoding, we can expect
that more accurate reconstruction may be feasible. How-
ever, extensive statistical analysis must be performed for a
wide acceptance of this technique in fMRI.

CONCLUSION

This article described a generalization of k-t FOCUSS that
is optimal from the compressed sensing perspective. k-t

FOCUSS reconstruction consists of two terms; one from
prediction, and the other from residual encoding. Then,
the optimal k-t FOCUSS design problem becomes opti-
mal sample allocation between the prediction and resid-
ual encoding steps. We proposed two prediction schemes
based on a novel 2-D RIGR and ME/MC. Both approaches
try to decorrelate the temporal correlation between the
frames using estimation in the Fourier or spatial domain,
respectively. In order to further sparsify the residual signal,
k-t FOCUSS allows various temporal transforms optimized
for specific dynamic MR applications. We also showed
that conventional k-t BLAST/SENSE and SPEAR corre-
spond to the special case of our k-t FOCUSS. Experimen-
tal results confirmed that high spatio-temporal resolution
can be achieved using k-t FOCUSS even from severely
undersampled k-t measurements.
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