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a b s t r a c t

Alternating TR steady-state free precession (ATR SSFP) has been proposed as a method to achieve a favor-
able frequency response compared to that of conventional balanced SSFP. ATR SSFP, much like conven-
tional SSFP, exhibits oscillatory transient signal behavior that can degrade image quality. Thus an
efficient preparation scheme is desired in order to actively reduce this initial signal fluctuation. Using
an approach similar to that of Le Roux [Simplified model and stabilization of SSFP sequences, J. Magn.
Resonan. 163 (1) (2003) 23–37], we construct a mathematical model for ATR SSFP sequences and show
a Fourier relation between the separated odd and even terms of the RF flip angle increment sequence dur-
ing an initial preparation, and the resulting oscillatory residues. A weighted Kaiser–Bessel windowed
ramp can be used to design preparation schemes for arbitrary TR1, TR2, and RF phase cycling combina-
tions. Optimized Kaiser–Bessel windowed ramp preparations for wideband SSFP and fat-suppressed
ATR SSFP imaging are tested in phantoms. The results show substantially reduced transient signal oscil-
lation with this new initial preparation method.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction been proposed [8,9], which rely on sequences of RF pulses that
In balanced steady-state free precession (SSFP) MR imaging [1],
both the magnetization and the received signal oscillates during
the approach to steady state. The fluctuating signal creates a
non-smooth weighting in k-space that results in substantial image
artifact [2,3]. The duration of these transient oscillations is on the
order of the tissue T1 relaxation time. It is possible to simply wait
for the steady-state to be reached, however, this compromises the
effectiveness of magnetization preparation schemes (e.g. fat satu-
ration or inversion recovery) that are essential in many SSFP appli-
cations. Efficient initial preparation schemes are critical for the
broad use of SSFP sequences. Simple methods such as a=2-TR/2
preparation [2] can quickly align the magnetization in the direction
of its steady state, but only for a limited off-resonance range.

To achieve good transient oscillation suppression for a wider
range of frequencies, more elaborate methods were proposed. For
conventional balanced SSFP, Le Roux [4] used the SU2 formalism
[5–7] to develop a simplified model for transient signal behavior,
and to demonstrate a Fourier relation between RF flip angle incre-
ments and the resulting oscillatory residues. A Kaiser–Bessel win-
dowed ramp preparation method was proposed to minimize
oscillatory transients [4]. This approach has been widely adopted,
and is the current method-of-choice for reducing transient artifacts
in conventional balanced SSFP imaging. Initial preparation
schemes based on the Shinnar–Le Roux (SLR) algorithm have also
ll rights reserved.
accurately generate the steady-state frequency response by magni-
tude-scaling and direction-selection. In addition to its design
complexity, this method is sensitive to B1 variation.

Alternating TR SSFP has been recently proposed as a way to achieve
a favorable frequency response compared to conventional SSFP. In the
case of fat-suppressed ATR (FS-ATR) SSFP [10], a wide stopband is
achieved capable of suppressing fat in the steady state. In the case
of wideband SSFP [11], the spacing between nulls in the frequency
response can be increased which mitigates banding artifacts for a
given TR. Single-tip preparation was previously used for alternating
TR SSFP sequences [10]. Paired Kaiser–Bessel design has been recently
shown to have a performance comparable to optimum SLR design
when there is a sufficient number of preparation cycles [12].

In this work, we adapt the SU2 formalism approach to build a
mathematical model for alternating TR SSFP signal behavior. This
model provides justification for the use of Kaiser–Bessel windowed
ramps, and a method for optimizing these ramps. Optimized initial
preparation sequences for fat suppressed ATR SSFP and wideband
SSFP are validated in simulation and phantom studies. We also de-
scribe a preparation scheme that can be applied to any alternating
TR sequence with any RF phase cycling scheme.

2. Theory

In alternating TR SSFP (Fig. 1), two repetition times TR1 and TR2

are used, and the phases of RF excitation in the two TRs are 0 and
ðpþuÞ, respectively [10,11]. A full cycle of the steady state con-
tains two excitations and two periods of free precession and relax-
ation. Unlike conventional SSFP, the steady-state magnetization is
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Fig. 1. An alternating TR SSFP sequence. Black arrows represent RF excitation
pulses.
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alternating between two positions instead of returning to the same
place after each excitation.

In the following section, we set u ¼ 0 for simplicity, and later
will show that the result can be extended to arbitrary u when
0 6 u < p. Relaxation is neglected since its effects on signal oscilla-
tion are not as significant as the direction of the magnetization [4].

2.1. Characterization of the cycle rotation

In order to determine the resulting magnetization after multiple
cycles of ATR SSFP sequence, first we need to characterize its cycle-
rotation matrix. We define R0 to be the transition matrix for one
full cycle of the alternating TR sequence. When R0 rotates a magne-
tization from its position at TR1/2 (M1) to TR2/2 (M2) and back to
M1 at the next TR1/2 (M1 = R0M1, see Fig. 2), we find M1 to be the
steady-state magnetization, which is identical to the axis of R0 rota-
tion. R0 can be written as the product of a series of 3 � 3 orthogo-
nal rotation matrices (all representing right-hand rotations):

R0 ¼ R1 � R2 ¼ ½Rzðh1ÞRxðaÞRzðh2Þ� � ½Rzðh2ÞRxð�aÞRzðh1Þ� ð1Þ

where a is the flip angle, h1ð¼ �Df � p � TR1Þ and h2ð¼ �Df � p � TR2Þ
are the magnetization phase offsets due to off-resonance during
Fig. 2. The steady-state magnetization path of an alternating TR SSFP sequence with
ð0;pÞ phase-cycling. A full-cycle rotation of a magnetization with resonance offset Df
starts at M1. It experiences phase offset of h1ð¼ �Df � 2p � TR1=2ÞðM1 !Mþ

1 Þ, RF
excitation of angle �aðMþ

1 !M�
2 Þ, phase offset h2ð¼ �Df � 2p � TR2=2Þ and becomes

M2. Then it experiences another phase offset h2ðM2 !Mþ
2 Þ, excitation aðMþ

2 !M�
1 Þ,

phase offset h1 and it returns to M1.
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Fig. 3. The relation between M1;M2;n1, and n2. (a) 2D plot in x–y-plane. Dotted line rep
between z-axis and n (the projection of n1 and n2 on y–z-plane), /2 is the angle between
plot with three axes being ðx;n;n?Þ. /x is the angle between n and n1 in ðx;nÞ plane.
TR1/2 and TR2/2, respectively. R1 and R2 are the rotation matrices
for the first and second half-cycles, that M2 ¼ R2M1

and M1 ¼ R1M2. By re-writing the above matrices using SU2 formal-
ism (see Appendix A), we find the rotation axis n1ð¼ n1x̂iþ n1yĵþ n1zk̂,
without normalization) and rotation angle X1 of R1 matrix to be

n1x ¼ sin
a
2

� �
cos

Rh
2

� �
n1y ¼ sin

a
2

� �
sin

Rh
2

� �
n1z ¼ cos

a
2

� �
sin

h
2

� �
X1 ¼ 2 cos�1 cos

a
2

� �
cos

h
2

� �� �
ð2Þ

where h ¼ h1 þ h2 and R ¼ ðh1 � h2Þ=ðh1 þ h2Þ. Similarly, R2 has its
rotation axis n2ð¼ n2xîþ n2yĵþ n2zk̂, without normalization) and
rotation angle X2 as

n2x ¼ � sin
a
2

� �
cos

Rh
2

� �
n2y ¼ sin

a
2

� �
sin

Rh
2

� �
n2z ¼ cos

a
2

� �
sin

h
2

� �
X2 ¼ 2 cos�1 cos

a
2

� �
cos

h
2

� �� �
ð3Þ

We then define X � X2 ¼ X1, where X � 2 cos�1½cosðh=2Þ� ¼ h for
small a values. n1;n2;M1, and M2 are plotted in Fig. 3. Note that
n1 and n2 are situated in the bisector plane of dM1M2 and are
symmetric about the y–z-plane, with the norms

kn1k ¼ kn2k ¼ ½1� cos2ða=2Þ cos2ðh=2Þ�
1
2 ¼ ½1� cos2 X�

1
2

¼ sin X: ð4Þ
2.2. Approach to steady-state from thermal equilibrium

Fig. 3a and b shows the projections of the vectors on x–y and y-
z-planes, respectively, and Fig. 3c contains the three-dimensional
depiction. We define /1 as the zenith angle between z-axis and n
(the projection of n1 and n2 on y–z-plane), and /2 as the angle be-
tween n and M1 (which is equal to the angle between n and M2).
The values of /1 and /2 are determined by the RF flip angles of
the current R1 and R2 rotation. These two variables indicate the
direction of the steady-state magnetizations, hence are essential
for the calculation of transient oscillating residues.

Fig. 3 along side with the derivation in Appendix B describes the
relation between /1;/2, and RF flip angle. Starting from thermal
equilibrium (when magnetizations are aligned with z-axis), an ini-
tial varying RF sequence fakg is applied. From Fig. 3b we find that
y
2 M2

n

n⊥

φ2

c

u2
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n
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n1
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resents the magnetization path as in Fig. 2. (b) 2D plot in y–z-plane. /1 is the angle
n and both M1 and M2. Vector n? is in the y–z-plane and perpendicular to n. (c) 3D
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after the kth excitation, when the flip angle ak is small, the change
in /1 value during this half-cycle (denoted as D/1ðkÞ) is propor-
tional to the RF flip angle increment Dakð¼ ak � ak�1Þ that

D/1ðkÞ ¼ Dak �
sinðRh=2Þ
2 sinðh=2Þ ð5Þ

From Fig. 3c we also find D/2ðkÞ to be proportional to Dak:

D/2ðkÞ ¼ Dak �
cosðRh=2Þ
2 cosðh=2Þ ð6Þ

Please see Appendix B for complete derivations of Eqs. (5) and (6).

2.3. Transient oscillatory residues

We define the oscillatory residue e to be the magnetization
component perpendicular to its steady-state position. It lies in
the ðu1; xÞ plane (perpendicular to M1) at TR1/2 and in ðu2; xÞ plane
(perpendicular to M2) at TR2/2 (see Fig. 3b). After the kth RF excita-
tion, the new oscillatory residue ek can be calculated by first adding
the shift in the steady-state magnetization vector (=the origin of
ðu; xÞ plane) to ek�1, then apply the X rotation. The relation be-
tween the oscillatory residues in two consecutive echoes can thus
be written as

ek ¼ e�iX ek�1 þ D/1ðkÞjMj þ e�ipkD/2ðkÞjMj
� 	

ð7Þ

The e�ipk term represents the alternating sign of D/2 during TR1 and
TR2.

Defining the phase-shifted oscillatory residue �k ¼ ek � eiXk and
setting the magnetization magnitude jMj ¼ 1, with Eqs. (5) and
(6), we find the oscillatory residue �p after p excitations (p is an
even number) to be

�p ¼
1
2

sinðRh=2Þ
sinðh=2Þ

Xp

k¼1

eihðk�1ÞDak


 �
� cosðRh=2Þ

cosðh=2Þ
Xp

k¼1

eiðh�pÞðk�1ÞDak


 �" #
ð8Þ

which shows that the oscillatory residue function is a linear combi-
nation of the Fourier transforms of the flip angle increment
0

1

TR2
TR1

0
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phase offset during (TR1+TR2)/2
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c

Fig. 4. Wideband SSFP sequence: (a) an RF flip angle increment sequence fDakg designe
ramp sequence calculated using values in (a), that ak ¼

Pk
n¼1Dan . (c) The absolute value

Grey solid line represents the true residue values obtained using matrix rotation, black d
linear ramp and Kaiser–Bessel windowed ramp preparation. Black solid line: optimized K
b1 ¼ b2 ¼ 0:5, grey solid line: linear ramp.
sequence fDakg (see Appendix C for the complete derivation). Note
that when TR1 = TR2, this simplifies to balanced SSFP, and is
equivalent to Eq.(24) in Ref. [4]. The preparation sequence for a
steady-state sequence with imaging flip angle a0 has two con-
straints, which are a0 ¼ 0 and ap ¼ a0.

A windowing function fwkg is then chosen as the base flip angle
increment sequence for initial preparation. We split fwkg into two
separate series of its odd and even elements, multiply them with
scalars b1 and b2, respectively (b1 þ b2 ¼ 1 in order to meet the
ap ¼ a0 constraint). The new flip angle increment sequence
becomes fbmwkg (m = 1 when k is even, m = 2 when k is odd),
and the oscillatory residue can be re-written as

�p ¼
sinðRh=2Þ
sinðh=2Þ b1

Xp=2

k¼1

eihð2k�1Þw2k


 �
þ b2

Xp=2

k¼1

eihð2k�2Þw2k�1

 �" #

þ cosðRh=2Þ
cosðh=2Þ b1

Xp=2

k¼1

eihð2k�1Þw2k


 �
� b2

Xp=2

k¼1

eihð2k�2Þw2k�1

 �" #

ð9Þ

We can then optimize b1 and b2 for any resonance offset by mini-
mizing j�pj at h � h0 ¼ �Df � p � ðTR1 þ TR2Þ. From Eq. (9) we know
that j�pjh�h0

has its minimum when

j�pjh�h0
¼ sinðRh=2Þ

sinðh=2Þ ðb1þb2Þþ
cosðRh=2Þ
cosðh=2Þ ðb1�b2Þ

� �
�Ffw2k�1g¼0

¼ tanðRh=2Þ
tanðh=2Þ ðb1þb2Þþðb1�b2Þ ð10Þ

Considering a wideband SSFP sequence (alternating TR SSFP with
ð0;pÞ phase-cycling) [11], for the center of passband h � 0, the
optimized b1=b2 � ð1� RÞ=ð1þ RÞ ¼ TR2=TR1. Fig. 4a shows an
optimized eight-step Kaiser–Bessel windowed flip angle increment
sequence fDakg, that its elements form an alternatively scaled Kai-
ser–Bessel windowing function. The actual flip angle ramp for the
initial preparation is shown in Fig. 4b.

Numerical simulations of different choices of window function
fwkg and scalars ðb1; b2Þ were performed for a wideband SSFP
sequence with p ¼ 8 (four full-cycles). Fig. 4c shows the oscillatory
↔↔

Time  →

TR2 TR1

0

1

Δa1 Δa2 Δa3 Δa8

π π      0     
phase offset during (TR1+TR2)/2

b

d

d using Kaiser–Bessel windowing functions with optimized ratios. (b) The actual RF
of simulated oscillatory residues after an optimized 8-step linear ramp preparation.
ashed line represents the result given by Eq. (9). (d) True residue values after 8-step
aiser–Bessel window ðb ¼ 3Þ, grey dashed line: Kaiser–Bessel window ðb ¼ 3Þ with
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residues after linear ramps (ramps based on a rectangular window,
i.e. the flip angle increments are constant) with optimized b1; b2.
The solid line represents the true oscillatory residue values calcu-
lated using four R0 matrix rotations, and dotted line represents the
approximated values obtained from Eq. (9). The approximated and
true j�pj functions are in close agreement within the passband.
Fig. 4d shows true oscillatory residues after a linear ramp (opti-
mized b1; b2) and Kaiser–Bessel windowed [13] ramps (flip angle
increments forms a Kaiser–Bessel window) with both optimized
ðb1; b2Þ and b1 ¼ b2 ¼ 0:5. The Kaiser–Bessel window was chosen
because its shape can be flexibly modified by adjusting one control
parameter b, and because it provides a near-optimal solution [14].
The black solid line represents the Kaiser–Bessel windowed ramp
with optimized b1 and b2, which shows the best oscillatory residue
attenuation among the three methods.

2.4. General model for ATR SSFP sequences

This approach can be generalized to alternating TR sequences
with an RF phase-cycling of ð0;pþuÞ;0 6 u < p by writing down
the new full-cycle rotation matrix R00 as

R00 ¼ R01 � R
0
2

¼ ½Rzðh1ÞRxðaÞRzðh2Þ� � ½Rzðh2ÞRzðuÞRxð�aÞRzð�uÞRzðh1Þ�
¼ ½Rzðh01ÞRxðaÞRzðh02Þ� � Rzðh02ÞRxð�aÞRzðh01Þ

� 	
ð11Þ

which has the same form as R0 in Eq. (1), with h01 ¼ h1 �u=2; h02 ¼
h2 þu=2. Therefore the oscillatory residue can be obtained by
substituting Rh in Eq. (9) with ðRh�uÞ:

�p ¼
sinððRh�uÞ=2Þ

sinðh=2Þ b1

Xp=2

k¼1

eihð2k�1Þw2k


 �
þb2

Xp=2

k¼1

eihð2k�2Þw2k�1

 �" #

þ cosððRh�uÞ=2Þ
cosðh=2Þ b1

Xp=2

k¼1

eihð2k�1Þw2k

 �

�b2

Xp=2

k¼1

eihð2k�2Þw2k�1

 �" #

ð12Þ

and the relation between optimized scalars b1 and b2 becomes
Fig. 5. Fat-suppressed ATR SSFP sequence: (a) an RF flip angle increment sequence fDakg
band. (b) The actual RF ramp sequence calculated using values in (a), that ak ¼

Pk
n¼1Dan.

linear ramp preparation. Grey solid line represents the true residue values obtained usin
residue values after 8-step linear ramp and Kaiser–Bessel windowed ramp preparation. B
line: Kaiser–Bessel window ðb ¼ 3Þ optimized for fat band, grey solid line: linear ramp
1þ tan½ðRh0 �uÞ=2�
tanðh0=2Þ

� �
� b1 ¼ 1� tan½ðRh0 �uÞ=2�

tanðh0=2Þ

� �
� b2 ð13Þ

For example, an FS-ATR SSFP sequence [10] with
TR2 ¼ TR1=3 and 0; 3

4 p

 �

RF phase-cycling has center of passband
(water frequency) at h0 ¼ �p=2 (omitting the RF phase increment
to shift water to h ¼ 0, for simplicity). Using Eq. (13), the optimized
b1 and b2 for water frequency will be

b1 ¼ b2 ¼ 0:5

We can also optimize b1 and b2 for the center of the stopband (fat
frequency), which is at h0 ¼ p=2, and obtain

b1 ¼ 0; b2 ¼ 1

Flip angle increments and amplitudes in the ATR SSFP preparation
scheme designed using Kaiser–Bessel window and the optimized
ðb1; b2Þ values for the water band are shown in Fig. 5a and b.

Numerical simulations of different fwkg and ðb1; b2Þ were also
performed for this sequence with p ¼ 8 (four full-cycles), and the
results are shown in Fig. 5. In Fig. 5c, solid and dotted lines repre-
sent the true oscillatory residue values after four R00 rotations and
the approximated values from Eq. (12), respectively. The approxi-
mated and true j�pj functions are in close agreement except for
frequencies around the null bands of the ATR SSFP. Fig. 5d shows
true oscillatory residues after a linear ramp (b1 ¼ b2 ¼ 0:5, opti-
mized for water) and Kaiser–Bessel windowed [13] ramps
(b1 ¼ b2 ¼ 0:5, optimized for water and b1 ¼ 0; b2 ¼ 1, optimized
for fat). The black solid line represents the Kaiser–Bessel win-
dowed ramp with b1 and b2 optimized for water, which shows
the best oscillatory residue attenuation within the water passband.
Grey dotted line represents Kaiser–Bessel windowed ramp with
b1 and b2 optimized for fat, and this sequence suppresses oscilla-
tory residues better inside the fat-band.

3. Experimental methods

Experiments were performed on a Signa Excite HD 3T scanner
(GE Healthcare, Waukesha, WI) with a single-channel head coil.
designed using Kaiser–Bessel windowing functions with ðb1; b2Þ optimized for water
(c) The absolute value of simulated oscillatory residues after an optimized eight-step
g matrix rotation, black dashed line represents the result given by Eq. (9). (d) True
lack solid line: Kaiser–Bessel window ðb ¼ 3Þ optimized for water band, grey dotted
optimized for water band.



Table 1
Measured signal oscillation magnitude during the first 10 cycles of wideband SSFP, for
three initial preparation schemes

Dummy cycles Linear Kaiser–Bessel

Center passband (%) 18.7 4.6 1.8

Values are averaged over half the passband.

Table 2
Measured signal oscillation magnitude during the first 10 cycles of FS-ATR SSFP, for
three initial preparation schemes

No preparation Linear Kaiser–Bessel

Water band (%) 41.3 1.0 0.4
Fat band (%) 48.6 9.4 8.3

Values are averaged over half the water band and fat band.
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To measure the transient signal of different resonant frequencies, a
linear shim was used to generate a frequency gradient in a uniform
spherical ball phantom ðT1=T2 ¼ 150=35Þ. A pulse sequence was
designed to wait for thermal equilibrium, apply an eight-step ini-
tial preparation sequence, and then acquire the same phase encode
for 64 full-cycles. The process repeats for all the phase encoding
steps, so that a complete image can be reconstructed for each
imaging TR after starting from thermal equilibrium. Finally, we
extract one line from each image to plot the spectral profile evolu-
tion during the approach to steady state.

Experimentally measured transient signals were compared with
Bloch simulations in MATLAB (Mathworks, Inc., South Natick, MA).
Three types of initial preparation were considered: dummy-cycles,
linear ramp and Kaiser–Bessel ramp preparations (b1; b2 optimized
for water). All preparations consisted of eight pulses (four full-cy-
cles) and were 28ms in length. Two alternating TR SSFP sequences
were considered: wideband SSFP and FS-ATR SSFP. The prescribed
flip angle was 45� in all scans.

Phantom imaging with eight-step initial preparations and cen-
tric phase-encoding ordering was also performed for wideband
SSFP and FS-ATR SSFP sequences to observe the artifacts caused
by transient signal oscillation. Three ramp types were used: dum-
my cycles, linear ramp, and Kaiser–Bessel windowed ramp. Shim
gradients were applied to create a ±25 Hz off-resonance span in
the uniform ball phantoms. In wideband SSFP experiments the
ramps were optimized for the center of passband ðDf ¼ 0Þ. Ramps
optimized for different frequencies were tested in FS-ATR SSFP
scans. Two phantoms were imaged with their resonant frequencies
centered at water (pass band) and fat (stop band).

4. Results

Fig. 6 contains the simulated and measured transient signals
from a uniform phantom, as functions of number of cycles and
Fig. 6. Simulated and measured transient signals of a ball phantom after different prep
appear. (b) FS-ATR SSFP. The experimental measurements show good agreement with the
fluctuation.
resonant frequency. The experimental measurements show good
agreement with the simulation. The measured spectral profiles
are smoother compared to simulated ones because the real phan-
tom reflects a continuous intra-voxel frequency distribution,
whereas the simulation is discretely sampled in frequency. This
frequency distribution also facilitates the decay of signal oscillation
in experiments compared to simulations. Grey arrows indicate the
point when central dips [11] become visible. The formation of a
central dip in the spectral profile is related to magnetization relax-
ation, and it begins to form after the sequence reaches a constant
flip angle. Hence, the two ramp-up preparation schemes result in
a delayed appearance of the dip compared to dummy-cycle
preparation.

Initial preparations consisted of eight RF pulses (four full
cycles), were 28 ms in length, and consisted of either dummy cy-
cles, linear ramp, or Kaiser–Bessel ramp optimized for the center
of the water band. Tables 1 and 2 contain the averaged mea-
sured magnitude of oscillation over half of the passband and
aration methods. (a) Wideband SSFP, grey arrows indicate when the central dips
simulation. Kaiser–Bessel windowed ramp significantly reduced the transient signal



Fig. 7. Alternating TR SSFP phantom images after different preparation methods. Eight-step preparation was used for all the scans. Images obtained with Kaiser–Bessel
windowed ramp show better image uniformity and reduced artifacts. (a) Wideband SSFP images. Ramps were optimized for the center of passband where Df ¼ 0. (b) FS-ATR
SSFP images. Resonant frequencies of the two phantoms were centered at water band (pass band) and fat band (stop band), with a 	25 Hz span. Ramps optimized for water
(left column) and fat (right column) bands were both tested.
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stopband in the first 10 imaging cycles after different prepara-
tion schemes. Table values reflect the magnitude of oscillation
relative to the steady-state signal amplitude. In wideband SSFP
(Table 1), linear ramp reduced the oscillation from 18.7% to
4.6%, and Kaiser–Bessel ramp preparation further reduced it to
1.8% (the percentage represents the amount of oscillation
compared to steady-state magnitude). In FS-ATR SSFP (Table 2),
linear and Kaiser–Bessel ramps optimized for water resonant
frequency reduced the amount of oscillation in water band from
41.3% to 1.0% and 0.4%, respectively. The oscillation reduction in
fat band was from 48.6% to 9.4% (linear ramp) and 8.3% (Kaiser–
Bessel ramp).

Fig. 7 shows the actual images obtained after different eight-
step initial preparation schemes. Images obtained with Kaiser–Bes-
sel windowed ramp have significantly reduced artifacts in both se-
quences. In FS-ATR SSFP images (Fig. 7b), initial ramps with
different ðb1; b2Þ scalars show slightly more uniform signal and less
artifact along the phase-encoding (vertical) direction, around the
frequency bands they are optimized for. However, the visible dif-
ferences are subtle.

5. Discussion

Simulations and phantom experiments demonstrate ATR SSFP
imaging with reduced signal oscillation using optimized Kaiser–
Bessel windowed ramp preparation, compared to dummy-cycles
and linear ramp preparation. The preparation scheme can be easily
modified to minimize oscillatory residue at the desired resonant
frequency using Eq. (12), and only a simple recalculation is needed
when changing the length of preparation. This method is expected
to be robust in the presence of Bþ1 variation because it only relies on
relative flip angle amplitudes.

The Fourier relation between RF amplitude increments and the
amount of oscillatory residue is based on the assumption that half
of the imaging flip angle a=2 is small. As the flip angle becomes lar-
ger, actual oscillatory residues start to deviate from Eq. (8). Never-
theless, note that the small angle approximation ðtanða=2Þ � a=2Þ
used in Eqs. (5) and (6) only has a 10% error even when the value
of a is as high as 60�. This more than covers the flip angle range
typically used in ATR SSFP imaging.
Relaxation effects are neglected in our model, due to the fact
that T1 and T2 has little effect on the magnetization direction dur-
ing initial preparation [4]. In reality, relaxation would result in a
decreasing magnetization length which would introduce an addi-
tional smooth transient signal weighting in k-space, which is not
expected to cause substantial deviation from this model.

In this work, the coefficients b1 and b2 are optimized solely
with respect to the center of passband, independent of the chosen
windowing function. Therefore, the ramps may become slightly
less effective as the amount of off-resonance increases. For this rea-
son a Kaiser–Bessel windowing function is preferred since it has
peak concentration around its pass band center and good attenua-
tion in the side-lobes [14], thus the oscillatory residue can remain
suppressed for a wide range of frequencies. As Fig. 7 shows, Kaiser–
Bessel windowed ramps optimized for water frequency still
perform well in the fat band, and the same for the opposite case.
Further optimization using numerical calculation over a frequency
band is possible, in which case the spectral response of the win-
dowing function and subject off-resonance characteristic will also
become factors in the decision of b1 and b2.

6. Conclusions

We have developed a model for transient magnetization in
alternating TR SSFP. Initial preparation sequences can be designed
using a two-step process: first choose a windowing function (pref-
erably a Kaiser–Bessel window), then optimize the ðb1; b2Þ param-
eters by minimizing the oscillatory residue given in Eq. (12).
Kaiser–Bessel windowed ramps with scaling factors optimized
for wideband SSFP and FS-ATR SSFP were tested in phantom exper-
iments, and the results showed signifiant reduction of transient
signal oscillation in both cases. The proposed design can be applied
to any combination of repetition times and RF phase-cycling. It is
easy to implement, and actively reduces oscillatory residues during
the transient approach to steady state.

Appendix A

Using SU2 formalism, R1 (representing the rotation from M2 to
M1) can be re-written as a 2� 2 spinor matrix Q 1:
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Q 1 ¼ Q zðh1ÞQ xðaÞQ zðh2Þ

¼ e�ih1=2 0
0 eih1=2

" #
�

cos a
2


 �
�i sin a

2


 �
�i sin a

2


 �
cos a

2


 �" #
� e�ih2=2 0

0 eih2=2

" #

¼ cos
a
2

� �
cos

h
2

� �
� I� i

cos a
2


 �
sin h

2


 �
sin a

2


 �
e�iRh=2

sin a
2


 �
eiRh=2 � cos a

2


 �
sin h

2


 �" #
where h ¼ h1 þ h2 and R ¼ ðh1 � h2Þ=ðh1 þ h2Þ. As described in Ref.
[8], an SU2 matrix Q can have its rotation axis nð¼ nxîþ nyĵþ nzk̂Þ
and rotation angle X extracted directly from the matrix elements,
that

Q ¼ cos
X
2

� �
� I� i � sin

X
2

� �
�

nz nx � iny

nx þ iny �nz

� �
I is the identity matrix. Thus for matrix Q 1 we find

n1x ¼ sin
a
2

� �
cos

Rh
2

� �
n1y ¼ sin

a
2

� �
sin

Rh
2

� �
n1z ¼ cos

a
2

� �
sin

h
2

� �
X1 ¼ 2 cos�1 cos

a
2

� �
cos

h
2

� �� �
The same approach can be applied to R2 rotation to get the another
2� 2 matrix Q 2:

Q 2 ¼ Q zðh2ÞQ xð�aÞQ zðh1Þ

¼ e�ih2=2 0
0 eih2=2

" #
�

cos a
2


 �
i sin a

2


 �
i sin a

2


 �
cos a

2


 �" #
� e�ih1=2 0

0 eih1=2

" #

¼ cos
a
2

� �
cos

h
2

� �
� i

cos a
2


 �
sin h

2


 �
� sin a

2


 �
eiRh=2

� sin a
2


 �
e�iRh=2 � cos a

2


 �
sin h

2


 �" #

and its rotation axis n2ð¼ n2x̂iþ n2yĵþ n2zk̂Þ and rotation angle X2

are

n2x ¼ � sin
a
2

� �
cos

Rh
2

� �
n2y ¼ sin

a
2

� �
sin

Rh
2

� �
n2z ¼ cos

a
2

� �
sin

h
2

� �
X2 ¼ 2 cos�1 cos

a
2

� �
cos

h
2

� �� �
¼ X1
Appendix B

In Fig. 3b we define /1 as the angle between z-axis and n, and
observe that

tan /1 ¼
n1y

n1z
¼ n2y

n2z
¼ sinða=2Þ sinðRh=2Þ

cosða=2Þ sinðh=2Þ ¼ tan
a
2

� �
� sinðRh=2Þ

sinðh=2Þ

For small a=2 values we have tanða=2Þ � a=2, therefore

/1 � a � sinðRh=2Þ
2 sinðh=2Þ

Considering a sequence of excitations with RF flip angles fakg, the
change in /1 value after the kth excitation can be expressed as

D/1ðkÞ ¼ /1ðkÞ � /1ðk� 1Þ ¼ ½ak � ak�1� �
sinðRh=2Þ
2 sinðh=2Þ

¼ Dak �
sinðRh=2Þ
2 sinðh=2Þ :
Defining /2 as the angle between n and both M1 and M2, and
plotting M1;M2;n1 and n2 in 3D space (Fig. 3c), we find

M2 � cos /2 � sin /x � tan
X
2

� �
¼M2 � sin /2

Solving for /2, we have

tan /2 ¼ sin /x � tan
X
2

� �
¼ jn1xj
kn1k

� sinðX=2Þ
cosðX=2Þ ¼

sinða=2Þ
cosða=2Þ �

cosðRh=2Þ
cosðh=2Þ

¼ tan
a
2

� �
� cosðRh=2Þ

cosðh=2Þ

Again we apply small-a approximation and obtain

/2 � a � cosðRh=2Þ
2 cosðh=2Þ

Hence the change in /2 value after the kth excitation is

D/2ðkÞ ¼ /2ðkÞ � /2ðk� 1Þ ¼ ½ak � ak�1� �
cosðRh=2Þ
2 cosðh=2Þ

¼ Dak �
cosðRh=2Þ
2 cosðh=2Þ

The above equations indicate that for spins of a certain resonant
frequency, the amounts of increment in /1 and /2 is proportional
to the amount of RF flip angle increment Da.

Appendix C

Multiplying eiXk to both side of Eq. (7), we obtain a phase-
shifted form ð�kÞ of the oscillatory residue that

�k¼ eiXkek¼ eiXðk�1Þek�1þeiXðk�1Þ D/1ðkÞþe�ipkD/2ðkÞ
� 	

¼ �k�1þeiXðk�1Þ sinðRh=2Þ
2sinðh=2Þ �Dak�eiðX�pÞðk�1Þ cosðRh=2Þ

2cosðh=2Þ �Dak ðC:1Þ

Using the fact that when the sequence first starts from thermal
equilibrium, e0 ¼ �0 ¼ 0 and X � h, the oscillatory residue �p after
p excitations (p is an even number) can be calculated by summing
up the last two terms in Eq. (C.1):

�p ¼
1
2

sinðRh=2Þ
sinðh=2Þ

Xp

k¼1

eihðk�1ÞDak

 �

� cosðRh=2Þ
cosðh=2Þ

Xp

k¼1

eiðh�pÞðk�1ÞDak

 �" #

which suggests the Fourier relation between �p and fDakg: the first
term is the Fourier transform of fDakgmultiplied by a function of h;
the second term is the same Fourier transform shifted by p and
multiplied by another function of h.
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