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Target Audience: Radiologists and MRI physicists who use dynamic contrast-enhanced (DCE) MRI. 
 
Purpose: To explore the potential of machine learning (ML) to simultaneously estimate DCE-
MRI pharmacokinetic (PK) parameters and uncertainty. Dynamic contrast enhanced (DCE) 
MRI aims to estimate sub-voxel parameters of pathology pharmaco-kinetics through fitting of 
pharmaco-kinetic models to contrast agent concentration-time curves [1]. Many of the involved 
cost functions from non-linear models are not strongly convex or not even convex which 
introduces ambiguity in the parameters and deteriorates accuracy and precision due to 
susceptibility to noise and initializations. Development of such estimators is furthermore 
challenged by lack of reference methods and ground truth, and measures of precision can only 
be obtained through time-consuming Monte-Carlo simulations (MCS) with multiple noise 
realizations and initializations, or variance estimation through linear error propagation [2]. The 
present work explores the use of re-enforcement learning of neural networks to estimate 
posterior distributions [3] from which ranges of possible pharmaco-kinetic parameter as well as 
various metrics of certainty of the estimation can be derived. 
 
Methods: The neural network (Figure 1) consists of two separate input filter stages for 
measured concentration-time curves 𝐶" and arterial input functions (AIF) whose output is 
concatenated and fed into an encoder network of four dense layers. Each layer except for the last is followed by a LeakyReLU layer; the last is activated 
by sigmoids. The output of the last layer are 9 parameters Ψ per pixel for location, scale, and rotation of a uniform ellipsoidal distribution 𝑞% which serves 
as approximation to the posterior distribution. The cost function for training is given by: 

𝐿	 = min
%
E-‖𝐶" − Φ(𝜃; 𝐴𝐼𝐹)‖88 + 𝜆	E-[𝑞%(𝜃; 𝐶", 𝐴𝐼𝐹)] 

The first term enforces data consistency of the PK parameters θ		drawn from the posterior 𝑞%	. The second term, a negative entropy, enforces spread of 
the posterior to cover all possible PK parameters that could explain the data. Training data consisted of 1572 patches of 20x20 pixels and 50 time points 
whose noisy concentration time curves are generated by random maps of pathologically realistic parameters [4] for the extended Tofts model with 61 
AIFs with synchronized bolus arrival measured from clinical exams at our institution. Test data was taken from a pathologically and anatomically realistic 
digital reference object [4]. 
 
Results: As shown in Figure 2, the proposed method is 
able to estimate PK parameter maps that are comparable 
to conventional model fitting with multiple initializations. 
Scatter plots of the standard deviations of Kt predicted by 
the proposed method and MCS of conventional methods 
show good correlation between the two predictions, yet 
no absolute agreement. Figure 3 shows concentration 
time curves, and contour plots of the data consistency 
cost function for various projections into the PK 
parameter plane. The true value (red) is well contained 
inside the ellipsoid (blue cloud) and samples from the 
ellipsoid (blue cloud) result in very similar concentration 
time curves (blue shaded area). 
 
Discussion: The results indicate that the proposed 
method can simultaneously predict PK parameters in 
tumor tissue as well as provide metrics for uncertainty of 
the estimation due to noise as well as the general structure of the cost function landscape. Since minimum variance unbiased estimation is impossible 
for non-linear models in the Gaussian noise case a posterior distribution was chosen that does not give preference to a single value (like the mode). 
Convex posterior distributions like the uniform ellipsoid break down at low values of Kt when ve is impossible to estimate and the cost function is non-
convex. Possible solutions are the use of two super-imposed posterior distributions, or sparsity constraints on Kt that enforce the posterior to expand into 
the desired trench of the cost function landscape.  
It remains future work to show how the derived metrics of uncertainty can be used to inform tumor classification, and ultimately impact diagnostics. 
Limitations of the current work are the almost exclusive use of artificial data instead of real clinical data and the synchronization of the bolus arrival. 
Training procedure and network architecture were set up however to be readily extensible to clinical data for which no ground truth exists that could be 
used during training. The effects of changing levels of noise and the correct choice of hyper-parameters also need to be investigated. 
 
Conclusion: Neural networks can be used to simultaneously provide PK parameter estimates and measures of uncertainty without relying on sampling 
methods, linearizations, or ground truth labels during training. 
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Figure 1: Network architecture: Input filters with 
temporal convolutions of different kernel lengths, 
encoder with dense layers. 

Figure 2: Evaluation in a brain tumor digital reference object. Left: Comparison of PK 
parameter maps. Right: Correlation of standard deviation as predicted by proposed method 
and conventional Monte Carlo method.  

Figure 3: Contour plots of cost functions for PK parameter planes. Red dot is the true value. Blue cloud shows samples from posterior distribution which 
are used to generate concentration time curves in the blue area. 


