

Accelerated Cardiac Cine Using Locally Low Rank and Finite Difference Constraints

Xin Miao¹, Sajan Goud Lingala², Yi Guo², Terrence Jao¹, and Krishna S. Nayak^{1,2}

¹Department of Biomedical Engineering, ²Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States,

23rd Annual Meeting & Exhibition • 30 May–05 June 2015 SMRT 24th Annual Meeting • 30–31 May Toronto, Ontario, Canada

Declaration of Financial Interests or Relationships

Speaker Name: Xin Miao

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

• Global Low Rank (GLR)¹⁻⁵: PSF ^{1,5}, k-t PCA², IRPF³, k-t SLR⁴

Z. Liang, IEEE-ISBI, 2007
H. Pedersen et al. MRM, 2009
J. P. Haldar and Z. Liang, IEEE-ISBI, 2010
S. G. Lingala et al. IEEE-TMI, 2011
B. Zhao et al. IEEE-TMI, 2012

• Locally low rank⁶ (LLR), PSF with varying model order⁷

• This study: LLR + sparsity

ISMRM Challenge

2013 Challenge Ph I Leaderboard Ph I Cases Info

Home Leaderboard Cases Info 2013 Chal 2012 Chal

Key Dates

Home > 2013 Ph I Leaderboard

2013 Ph I Leaderboard

- September 2015: Phase I data available
- Jan-Feb 2016: Phase II begins
- May 2016: Winner announced at ISMRM 2014

Team Name	Score	Case #1	Case #2	Case #3	Case #4	Case #5	Case #6	Case #7	Case #8	Case #9	Case #10	Last Updated
fastbeat	08833	08612	08922	08878	08955	08603	09018	08910	08451	08941	09049	15-Mar- 2014 09:46:33 CST
SRT	08828	08576	08785	08839	09140	08514	09027	08840	08665	08977	08924	15-Mar- 2014 15:22:58 CST
TinWoodman	08764	08391	08903	08777	08861	08484	08924	08880	08659	08852	08918	15-Mar- 2014 21:52:07

Method: Data

Six fully-sampled 2D cine datasets

- 32 cardiac coils
- spatial resolution 1×1 mm², 30 timeframes per cardiac cycle.
- distributed by the 2013 ISMRM Challenge (http://www.ismrm.org/challeng

- Sampling patterns:
 - Variable-density random sampling
 - Cartesian golden-angle radial sampling
- Acceleration factors (R): 10 to 50.

- Locally low rank (LLR) + temporal finite difference (tFD)
- Algorithm: ADMM with variable splitting⁸

 $C_{\rm b}$ (•): operator to extract and reform the overlapping patches from $\Gamma,$ patch matrix size: $5x5xN_t$

• LLR+ temporal Finite Diff. compared with:

Methods	Regularization Terms
LLR	$\lambda \sum_{b \in patches} \left\ C_b(\Gamma) \right\ _{\text{Schatten, p}}$
Temp. Finite Diff.	$\lambda \ \nabla_t (\Gamma) \ _1$
kt-SLR	$\lambda_1 \ \Gamma\ _{\text{Schatten, p}} + \lambda_2 \ \nabla_t(\Gamma)\ _1$

- Quantitative metrics:
 - normalized root mean square error (NRMSE)
 - structural similarity index (SSIM)⁹
 - high frequency error norm (HFEN)¹⁰

HFEN=
$$\sqrt{\frac{\left\| LoG(\Gamma^*) - LoG(\Gamma_{true}) \right\|_{F}^{2}}{\left\| LoG(\Gamma_{true}) \right\|_{F}^{2}}}$$

LoG(•) : Laplacian of Gaussian filter that captures the edges

Z. Wang et al. IEEE-TIP, 2004
S. Ravishankar and Y. Bresler, IEEE-TMI, 2011

RESULT

Result

Result

Temp. Finite Diff.LLR

+ kt - SLR

- LLR + temp. Finite Diff.

Result

Averaged Ranking, R=20 Averaged Ranking, R=50

Discussion

- Retrospective \rightarrow Prospective study
 - 2D random : impractical in 2D acquisition
 - Cartesian golden angle sampling
 - \rightarrow 2D cine with golden angle radial
 - \rightarrow 3D cine with Cartesian sampling
 - 1D random:

LLR Temp. Finite Diff.

Summary

- LLR + temp. Finite Diff. provides superior image quality
 - preservation of fine structures, endo- and epicardial boundaries
 - Less model-related artifact
- The results are directly relevant to 2D cine MRI using radial sampling, and emerging 3D cine MRI methods.

Acknowledgement

• Magnetic Resonance Engineering Lab @USC

- American Heart Association: AHA/West 13GRNT13850012
- Wallace H. Coulter Foundation.

• 2013 ISMRM Challenge

