

<u>Sajan Goud Lingala¹</u>, Yinghua Zhu¹, Yoon-Chul Kim², Asterios Toutios¹, Shrikanth Narayanan¹, Krishna S. Nayak¹

¹Electrical Engineering, University of Southern California ²Samsung Medical Center, Seoul, South Korea

High spatio-temporal resolution multi-slice real-time MRI of speech using golden angle spirals with constrained reconstruction, parallel imaging, and a novel upper airway coil

23rd Annual Meeting & Exhibition • 30 May–05 June 2015 SMRT 24th Annual Meeting • 30–31 May Toronto, Ontario, Canada www.ismrm.org • www.ismrm.org/smrt

Declaration of Financial Interests or Relationships

Speaker Name: <u>Sajan Goud Lingala</u>

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

- Speech production
 - Complex coordination of several articulators
- RT imaging: several applications
- Speech science
 - Insights into language production
 - Emotional speech / Phonetics of singing
 - Modeling speech
 - ••
- Clinical practice
 - Movement disorders
 - Cleft palate
 - Apraxia
 - Tongue Cancer treatment, ...

Real time (RT) imaging of speech

Spiral RT-MRI

native time res. = 78 ms

E.Bresch et al, 2008 S.Narayanan et al, 2004

- Speech production
 - Complex coordination of several articulators
- RT imaging: several applications
- Speech science
 - Insights into language production
 - Emotional speech / Phonetics of singing
 - Modeling speech

Clinical practice

••

- Movement disorders
- Cleft palate
- Apraxia
- Tongue Cancer treatment

Real time (RT) imaging of speech

MRI v/s other modalities

- Electromagnetic Articulography (EMA)
 - High temporal res.
 - (upto | ms/frame)

UCLA Image Courtesy: Phonetics Lab

A.Toutios et al, 11 A.Wrench et al, 00

- **RT-MRI**
 - Non-invasive
 - Soft tissue contrast
 - Image deep structures
 - Arbitrary image planes

MRI v/s other modalities

- Electromagnetic Articulography (EMA)
 - High temporal res.
 - (upto | ms/frame)
- Invasive
- Cumbersome
- Cannot visualize deep structures

Image Courtesy: UCLA **Phonetics Lab**

A.Toutios et al, 11 A.Wrench et al, 00

- **RT-MRI**
 - Non-invasive
 - Soft tissue contrast
 - Image deep structures
 - Arbitrary image planes

- Limited by speed !
 - Tradeoffs in
 - Spatial resolution
 - Temporal resolution
 - Slice coverage

Spatial v/s Temporal resolution

- Schematic placement of speech tasks as "zones"
 - Consensus amongst Speech scientists (Linguists)
 - ISMRM endorsed Speech MRI summit held at Univ. of Southern California, February 2014

S.G. Lingala, B.P. Sutton, M.E. Miquel, K.S. Nayak, "Recommendations for Real time Speech MRI", JMRI, (in review)

Spatial v/s Temporal resolution

Cartesian imaging using parallel imaging, and Partial Fourier

S.G. Lingala, B.P. Sutton, M.E. Miquel, K.S. Nayak, "Recommendations for Real time Speech MRI", JMRI, (in review)

- To enable highly accelerated RT MRI of speech
 - Single slice imaging upto 12 ms/frame

Purpose of this work

- To enable highly accelerated RT MRI of speech
 - Single slice imaging upto 12 ms/frame
 - Three slice imaging upto 36 ms/frame

Purpose of this work

METHODS

Highly accelerated RT MRI of speech is achieved by

Novel custom upper airway coil

Fast spiral readouts with golden angle time interleaving

Constrained reconstruction

Methods

Custom upper airway coil

- We use <u>custom</u> upper-airway coils
 - Superior SNR in upper-airway regions of interest

Custom upper airway coil

(2 sizes: Adult and Kid)

Custom upper airway coil

- We use <u>custom</u> upper-airway coils
 - Superior SNR in upper-airway regions of interest

Relative SNR gain over a commercial 8-ch head coil

Custom upper airway coil

(2 sizes: Adult and Kid)

Golden angle spirals

- Spirals are naturally fast
 - Superior acquisition efficiency

Spiral Radial Cartesian

<u>Simulation</u> FOV: 20x20 cm²; spatial res: 2.4 mm²

10

Golden angle spirals

78 ms

time

Acq.

Spirals are naturally fast Superior acquisition efficiency

- **Golden angle sampling** offers flexibility in retrospective choice of temporal resolution
 - Guaranteed max. efficiency for <u>Fibonacci</u> choice of interleaves

Spiral Radial Cartesian

> **Simulation** FOV: 20x20 cm²; spatial res: 2.4 mm²

Golden angle spirals

78 ms

time

- Spirals are naturally fast
 - Superior acquisition efficiency

- Multi-slice time interleaved golden angle sampling
 - Guaranteed max. efficiency for Fibonacci choice of interleaves

Spiral Radial Cartesian

> **Simulation** FOV: 20x20 cm²; spatial res: 2.4 mm²

Constrained reconstruction

• Regularized SENSE reconstruction:

$$\min_{f} \|\mathcal{A}(f) - \mathbf{b}\|_{2}^{2}$$
 -
data consistency
 \mathcal{A} - coil sensitivity encoding
 ∇_{t} - temporal finite difference
 λ - regularization paramete

temporal reg.

g + NUFFT along GA spiral

ce

r

Constrained reconstruction

Regularized SENSE reconstruction:

$$min_f \|\mathcal{A}(f) - \mathbf{b}\|_2^2$$

data consistency

A

 ∇_t - temporal finite difference

 λ - regularization parameter

- Solved using iterative non-linear conjugate gradient algorithm
 - Reconduction time $\sim 60 \text{ min}$ for a 24 sec. speech sample with 12 ms time resolution (N_x x Ny x Nt = 140 x 140 x 2000)

temporal reg.

- coil sensitivity encoding + NUFFT along GA spiral

EXPERIMENTS

- I.5 T GE Signa Scanner
- Real time (RTHawk) interactive system
 - J. Santos, IEEE-EMBC 2004
- Simultaneous audio acquisition at 20 KHz, and noise cancellation
 - C.Vaz, Interspeech 2014

Simultaneous audio acquisition

Experiments

RTHawk

Interactive control station

Scanner Hardware

T1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12	Num took	Cape Soroli Look Look

- A range of sequences implemented
 - FOV: 20 cm^2 ; Flip angle: 15^0 ; slice thickness: 5 mm; TR = 6.004 ms
 - Single slice sequences
 - 2.4 mm²; 1.76 mm²
 - Two/three slice sequences
 - 2.4 mm²
- Reconstruction
 - Online
 - Gridding (without and with view-sharing)
 - Offline
 - Constrained reconstruction
 - 4 volunteers and 1 patient were imaged with a variety of speech stimuli
 - Counting numbers (normal and fast pace)
 - Puerto Rican Spanish stimuli
 - Sentences from the TIMIT set (standard in speech processing field)
 - S.Narayanan et al, Journal Acoustical Society of America. 2014

Experiments

RESULTS

Results: Volunteer

78 ms / frame **Fully sampled** Gridding

12 ms / frame Accelerated Const. recon

<u>2.4 mm²</u>

Repetitions of <u>"one-two-three-four-five"</u> at normal pace followed by rapid pace

0 s

zoomed in time profiles

29 s 34 s

Results: Volunteer

78 ms / frame **Fully sampled** Gridding

12 ms / frame Accelerated Const. recon

2.4 mm²

Repetitions of *<u>"one-two-three-four-five"</u>* at normal pace followed by rapid pace

18 s

126 ms / frame **Fully sampled** Gridding

18 ms / frame Accelerated Const. recon

29 s

34 s

zoomed in time profiles

26 s 31 s

Vowel and consonant sounds @ 12 ms/frame

• Tongue cancer patient imaged prior to treatment

18

Vowel and consonant sounds @ 12 ms/frame

Spectrogram of the simultaneously acquired audio

Fast multi-plane imaging: Spanish stimuli

- Puerto Rican Spanish stimuli
 - Involves rapid articulatory movements
 - Simultaneous sagittal and coronal imaging @ 24 frames/sec

Fast multi-plane imaging

- Consonants interleaved by vowels
 - /loo/-/lee/-/laa/-/za/-/na/-/za/
 - Simultaneous three slice imaging @ 36 frames/sec

- Novel accelerated RT-MRI of speech framework
 - Custom upper-airway coil
 - Spiral golden angle, multi-slice acquisition
 - Constrained reconstruction

Conclusions

- Novel accelerated RT-MRI of speech framework
 - Custom upper-airway coil
 - Spiral Golden angle, multi-slice acquisition
 - Constrained reconstruction
- Potential to drive new Linguistic based hypothesis which require high time resolution

- Funding
 - NIH 5R01DC007124-09

Speech Knowledge and Articulation Group (SPAN), California

SDAN | speech production and articulation knowledge group

Magnetic Resonance Engineering Laboratory (MREL), California

Magnetic Resonance Engineering Laboratory

Acknowledgements

Shrikanth Narayanan

Louis Goldstein

Univ. of S

Dani Byrd

THANK YOU

