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Introduction

e Sub-optimal coverage and resolution for Dynamic Contrast
Enhanced (DCE) MRI by sampling.
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Cartesian sampling coverage and resolution



Introduction

e Sub-optimal coverage and resolution for Dynamic Contrast

Enhanced (DCE) MRI by sampling.
* Whole-brain coverage high-resolution enabled by constrained
reconstruction from kt-spacel?.

Cartesian
sampling

coverage

1RM Lebel, et al. MRM 71(2): 635-644, 2014. %Y Guo, et al. ISMRM p374, 2015. *



Introduction

e Sub-optimal coverage and resolution for Dynamic Contrast

Enhanced (DCE) MRI by sampling.
* Whole-brain coverage high-resolution enabled by constrained
reconstruction from kt-spacel?.

* Important pathological information from pharmacokinetic(PK)
maps (K", v , v, etc.).

Reduced dimensionality:
from 4D dynamic images to
static PK maps.

Dynamic images



* Direct reconstruction of PK maps with PK model integrated in
reconstruction process

* This may enable acceleration rate and fidelity of
PK maps.



Conventional estimation of PK maps

Under-sampled
kt-space data: k(t)

Anatomical
Images: S(t)

|

Constrained reconstruction
using sensitivity maps, under-
sampling pattern,

with some sparsity constraints.

Sensitivity Sampling pattern

Contrast Agent
Concentration:

CA(t)

PK Parameters:

t
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Conventional estimation of PK maps

Under-sampled s Contrast Agent PK Parameters:
Images: S(t) Concentration: o
kt-space data: k(t) ges: l CA(t) Kirans, v,

Use T1w signal equation to estimate
contrast concentration changes over
time with T1 maps and MO maps.




Conventional estimation of PK maps

Under-sampled
kt-space data: k(t)

Anatomical
Images: S(t)

Contrast Agent
Concentration:

PK Parameters:

t
K ra ns’ Vp

Use PK model (Patlak model
in our study) to estimate PK
parameters from contrast
concentration changes C(t)




Conventional estimation of PK maps

Under-sampled s Contrast Agent PK Parameters:

. Concentration:
kt-space data: k(t) Images: S(t) CA(t)

|

Reduced dimension!
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Conventional estimation of PK maps

Contrast Agent

_ Concentration:
kt-space data: k(t) Images: S(t) CA(t) Ktrans, v,

Under-sampled Anatomical PK Parameters:
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Forward modeling

Under-sampled Anatomical Contrast Agent PK Parameters:
Images: S(t) Concentration: :
kt-space data: k(t) ges: CA(t) Ktrans, v,
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Direct estimation

Under-sampled Anatomical Contrast Agent PK Parameters:
| . S(t) Concentration: .
kt-space data: k(t) Mages: CA(t) Ktrans, v,

If a general function f is used:
k()= f(K™,v,)

Can sovle PK maps with an optimization problem:
(Ktrans , vp) — a};%?nn || ku (t) _ f(Ktrans ’ Vp) ||§

Vp
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Direct estimation

e Solve: (K”“”S,vp):argmin||ku(t)—f(K”“”S,vp)||§

trans
K Vo

* No constraint is needed, a parameter-free reconstruction!

* Gradient is calculated for the objective function to use a efficient |-BFGS

algorithm.
. |Comwemtional Dt
Sparsity constraint Temporal finite difference on None!
anatomic images
Algorithms Alternating Direction Methods of Limited memory Broyden—Fletcher—

Multipliers (ADMM) Goldfarb—Shanno (I-BFGS)
Reconstruction time (2D case) 265s 296s
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Retrospective study

e Fully-sampled DCE from brain tumor patients

sampling?

e Retrospectively down-sampled 10x ~ 100x

Y Zhu et al. p4365, ISMRM 2014

2Y Zhu et al. p2535, ISMRM, 2015 .
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Zoom-in on tumor, 100x

Fully-sampled Direct Conventional
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Direct

Conventional

Fully
sampled




Zoom-in on vessels, 100x

Fully-sampled Direct Conventional




1-rMSE & mSSSIM

1-rMSE and mSSIM
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Prospective study

* Direct reconstruction from prospective under-

sampled data:

— A whole-brain FOV: 22x22x19cm3

— Spatial resolution: 0.9x0.9%x1.9mm3

— Temporal resolution: 5s

— Traditional sampling
— Prospective under-sampled in ky-kz plane
— Reduction factor 30x
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Whole-brain K" maps




Whole-brain v, maps




A three-plane view




* Direct reconstruction of PK maps is feasible.
e Superior accuracy up to reduction factor of 100x.
* No significant difference in reconstruction time.

 Parameter free reconstruction!

* Applied successfully to whole-brain DCE-MRI in brain tumor

e

patients.
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