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PURPOSE: Constrained reconstruction algorithms generally rely on manual selection of one or more tuning parameters in order to deliver good 
image quality. This non-trivial task has motivated a board range of automated parameter selection methods based on quantitative measures [1-7]. 
Methods based on Stein’s unbiased risk estimate (SURE) have shown promise for MRI constrained reconstruction [4]. However, for ill-posed inverse 
problems, it is difficult to estimate MSE using SURE since the observed data contains only partial information about the true image; also, analytically 
evaluating SURE is difficult for iterative methods since it requires exactly differentiating the operations in nearly every computation step. To 
overcome these two disadvantages, Weller et al. [5] proposed a Monte-Carlo SURE framework based on regularized auto-calibrating parallel MRI 
reconstruction. They demonstrated that a wide range of parameter values would produce similar results, indicating precise estimation of MSE can be 
compromised. Given this, we propose an algorithm that does not require differentiating the computation operations, and is straightforward to 
implement. We show that this framework iteratively determines the tuning parameter based on the data consistency term and provide similar 
reconstruction result with manually selected parameters. 
THEORY: Constrained reconstruction for under-sampled k-space data can 
be formulated as a minimization problem: 
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or equivalently: 
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 (Eqn. 2) 

Since ε  is in general less difficult to estimate than λ , we propose an 
algorithm that directly solves Eqn. 2. Chambolle [6] showed that the error 
term FuSm − k

 
is a non-decreasing function, denoted as f λ( ), of the 

shrinkage parameter λ , and that to make f λ( ) converge to the estimated 
value of ε , an effective iterative adjustment is λ n+1( ) = λ n( ) ε FuSm − k( )  [6-
7]. According to Morozov’s discrepancy principle [8], ε  can be estimated 
as the number of samples times the noise standard deviation per sample, 
measured with a RF-off scan or estimated by robust median absolute 
deviation [7]. λ  is automatically adjusted during iterations so the 
correction factor ε FuSm − k  will converge to 1.  
METHODS: Raw k-space data were collected from 7 patients scheduled 
for routine brain MRI on a 3T Signa EXCITE HDxt system with an 8-channel head coil. Raw 
data from two sequences were used: (1) 512×346×28 2D multi-slice oblique-coronal T2 
weighted spin echo (T2-SE) with TE/TR of 102/6367 milliseconds, echo train length 15; (2) 
320×192×28 2D multi-slice oblique-coronal T2 weighted fluid-attenuated inversion recovery 
(T2-FLAIR) with TE/TI/TR of 150/2200/8900 milliseconds. The raw k-space data was 
retrospectively under-sampled. The under-sampling mask and tuning parameter for comparison 
was selected by experienced radiologist, as described in Ref  [9]. We implemented the 
reconstruction using Alternating Direction Methods of Multipliers (ADMM) framework [10], 
and updated the shrinkage parameter λ  in each iteration step. 
RESULTS AND DISCUSSION: This adaptive framework required 3 times as many iterations 
to learn the parameter λ . As shown in Fig.1, the threshold value eventually converged to the 
same value for each data set with different initial guess across several orders of magnitude. We 
observed that underestimation of the noise level ε  would lead to a correction factor always 
smaller than 1 and a trivial value of the threshold λ . As a result, a good estimation of noise 
level is crucial to this algorithm. The converged parameter selection results by proposed 
method are shown in the Table. 1. The resulting reconstruction quality is comparable to the use 
of tuning parameters manually selected by Radiologists. 
Representative images are shown in the Fig. 2.  
CONCLUSION: Tuning parameters can be determined 
iteratively, eliminating the need for manual parameter 
selection, but requiring extra iterations.  Our preliminary 
results indicate that this approach provides image quality 
comparable to manual parameter selection. Future work 
will extend this algorithm to multiple constraint terms, 
and investigate experimental validation using various 
kinds of data sets. 
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Figure 2 Example result: T2w-SE with rate-3 undersampling and constrained reconstruction. 
(bottom) zoomed view of the hippocampus that illustrates the depiction of fine structures.  
 

 
Accel 
Rate 

Manual  
(×10-3) 

Automatic 
(×10-3) 

T2-SE 

2x 2.0 1.8±0.8
3x 2.0 1.5±0.9
4x 2.0 1.4±0.9

T2-FLAIR 
2x 2.0 2.0±0.8
3x 1.0 1.8±0.6
4x 1.0 1.0±0.2

Table 1. Comparison of manually selected and 
automatically determined tuning parameters. The 
proposed method was applied to 7 data sets, and 
parameter is shown as mean±std dev. 

 
Figure 1 Shrinkage parameter evolves during iterations 
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