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Introduction – The preparation of longitudinal magnetization using saturation pulses is necessary in many abdominal applications, such as dynamic 
contrast enhanced imaging [1], arterial spin labeling [2], and RF transmit (B1+) mapping [3].  At 3T, B0 and B1+ variations are substantial across the 
abdomen and require careful consideration during the RF pulse design.  A recent work demonstrated in cardiac imaging at 3T that tailored RF hard-
pulse trains (with varying sub-pulse areas) provided better saturation performance than both constant-area 90° hard-pulse trains and adiabatic BIR-4 
approaches, while keeping SAR relatively low [4].  In this work, the tailored saturation (TSAT) approach is extended to 3T abdominal imaging.  Due 
to increased dielectric resonance and susceptibility effects, B0 and B1+ variations across the abdomen are larger than those previously experienced in 
the heart.  In simulations and in vivo, we demonstrate greater immunity to B0 and B1+ variations and more robust saturation performance with TSAT 
(n=3-5 sub-pulses) than widely used constant-area 90° pulse trains and 8-ms BIR-4 pulses.        

Methods and Results – Fig. 1a shows a B0-B1+ scatter plot from an 
abdominal slice of a healthy volunteer.  Similar plots were obtained in ten 
volunteers on separate occasions.  B1+ was estimated from a n=3 90° pulse 
train SDAM scan by dividing the actual by the nominal (prescribed) flip 
angles.  Note two distributions of data points (red arrows), one near 0 Hz for 
water spins and one near -440 Hz for fat spins at 3T.  B1+ variations equally 
affect both distributions.  Fig. 1a was used to guide the design of TSAT pulse 
trains.  Bloch simulations were performed over (i) a 1-kHz range centered 
about -220 Hz, which is one-half of the fat-to-water chemical shift at 3T (Fig. 
1a horizontal axis), and (ii) a more conservative B1+ range of 0.5-1.4 (Fig. 1 
vertical axis).  We refer to this as the “B0-B1+ footprint” (red contour, Fig. 1a).  
A slightly larger B1+ range was chosen to account for errors from the n=3 90° 
pulse train SDAM data due to possible insufficient saturation.  An exhaustive 
search was used to determine TSAT weights {α1…αn} that minimized the 
mean residual Mz/Mo distribution over the footprint.  The search range was 
from 60° to 300° in 1° (n=3) and 5° (n=4-5) increments.  Fig. 1b-d compares 
simulations of the residual Mz/Mo distribution over the footprint for three 
select saturation schemes.  The BIR-4 pulse (Fig. 1b) has excellent saturation 
for on-resonance spins and is quite insensitive to B1+ scaling.  However, 
saturation performance is weaker for off-resonance spins, especially at low B1+ 
scales.  TSAT (n=5) (Fig. 1d) is more immune to low and high B1+ scales 
compared to 90° pulse train (n=3) (Fig. 1c).  Table 1 lists the mean, standard 
deviation, and maximum of residual magnetization over the footprint for all 
seven approaches considered.  Performance improves with longer pulse trains 
for both 90° and TSAT cases.  For a fixed n, TSAT provides improved overall 
saturation than 90° pulse trains.  Table 2 lists the TSAT weights used.  
� In Vivo Study – Saturation performance was evaluated in five subjects with 
a saturation-no-recovery 2DFT GRE sequence using centric view-order [4]. 
Acquisition time was 104 ms / saturation scheme with FOV=40 cm, a 5-mm slice, and 
64×64 sampling matrix.  All experiments were performed with an eight-element array 
on a 3T GE scanner.  All saturation pulses had a center frequency that was shifted -220 
Hz relative to that of 1H in water.  This centers the saturation profiles half-way 
between the two data distributions in Fig. 1a.  Fig. 2 illustrates results from one 
volunteer, and the same color map from Fig. 1 is used.  In the anterior and posterior 
aspects of the abdomen where B1+ non-uniformity is expected in the anatomic image, 
90° pulse train and BIR-4 approaches are inadequate at suppressing the local 
magnetization (dashed regions).  Much more uniform saturation is achieved with 
TSAT.  The mean Mz/Mo over the abdomen for n=4 (0.009±0.017) and n=5 
(0.008±0.013) is comparable.   
Discussion – We have demonstrated a TSAT scheme that achieves near-perfect 
magnetization saturation across the abdomen at 3T.  Simulations (not shown) suggest 
that the mean residual Mz/Mo for these pulses rises slightly from 0.015 to 0.025 for T1 
as low as 50 ms, indicating robust saturation performance over a wide range of 
physiological T1, including fat.  It would have been similarly possible to tailor the 
BIR-4 pulses based on the B0-B1+ footprint, although RF energy deposition would be 
an additional constraint.  For certain applications such as arterial spin labeling and 
perfusion imaging, minimizing the maximum Mz/Mo value may be more advantageous 
and is a straightforward adaptation of our approach.  Thus, the proposed TSAT method 
is promising and will be useful in many quantitative abdominal applications [5, 6]. 
References – [1] Low RN, et al. JMRI 28:946-956, 2008. [2] Martirosian P, et al. MRM 51:353-361, 2004. [3] Cunningham CH, et al. MRM 
55:1326-1333, 2006. [4] Sung K, et al. MRM 60:997-1002, 2008.  [5] Merwa R, et al. ISMRM 2008, 3092.  [6] Hu HH, et al. ISMRM 2008, 3794. 

B0 off-resonance (Hz)

B
1+

sc
al

e 
(α

ac
tu

al
/ α

n
om

in
al

)

B0 off-resonance (Hz)

B
1+

sc
al

e 
(α

ac
tu

al
/ α

n
om

in
al

)

b: BIR-4 
  

c: 90° (n = 3) 
  

d: TSAT (n = 5)
  

a: B0-B1+ scatterplot 
  

Mz/Mo 
0.4

0.2

-0.2

-0.4

0

Fig. 1: (a) B0-B1+ scatter plot from an axial abdominal slice in one 
volunteer.  Vertical B1+ scale;   horizontal frequency offset.  Note two data 
distributions (arrows), one near water spins (0 Hz) and one near fat spins (-
440 Hz chemical shift at 3T).  Red contour highlights target saturation 
footprint.  Simulation of residual Mz/Mo for (b) 8-ms BIR-4 pulse, (c) 90°
hard-pulse train (n = 3), and (d) TSAT (n = 5) hard-pulse train. 
  

Fig. 2: In vivo measurement of residual Mz/Mo in the abdomen. 
TSAT n = 4 and n = 5 schemes exhibit the most uniform 
saturation in fat, and in areas of known B1+ variations (dashed). 
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 Table 2: TSAT weights. 
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 Table 1: Mean and 
maximum residual 
magnetization from 
simulation. 

Proc. Intl. Soc. Mag. Reson. Med. 17 (2009) 2583


